Abstract

Dark-field illumination provides an imaging mode that rejects specular light, thereby highlighting edge features. We analyze dark-field imaging by using cylindrical vector beam illumination with a confocal microscope equipped with a microstructure fiber mode filter. A numerical model based on rigorous coupled-wave analysis has been used to analyze the method. We acquired images of separated edges features to investigate the edge separation resolution of the method. A through-focus comparison of azimuthal and radial polarization shows a measurable dependence of edge separation on polarization.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Inoué and R. Oldenbourg, "Microscopes," in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 17, p. 25.
  2. E. M. Slayter, Optical Methods in Biology (Wiley, 1970), pp. 318-340.
  3. Ref. , pp. 25-27.
  4. F. H. Smith, "Microscopic interferometry," Research 8, 385-395 (1955).
  5. T. Wilson, Confocal Microscopy (Academic, 1990), Chap. 1, pp. 1-20.
    [CrossRef]
  6. R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
    [CrossRef]
  7. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996).
    [CrossRef] [PubMed]
  8. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994).
    [CrossRef] [PubMed]
  9. K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  10. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
    [CrossRef] [PubMed]
  11. D. Biss and T. Brown, "Polarization vortex driven second harmonic generation," Opt. Lett. 28, 923-925 (2003).
    [CrossRef] [PubMed]
  12. D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
    [CrossRef] [PubMed]
  13. A. van de Nes, P. Munro, S. Pereira, J. Braat, and P. Török, "Cylindrical vector beam focusing through a dielectric interface: comment," Opt. Express 12, 967-969 (2004).
    [CrossRef] [PubMed]
  14. D. P. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface: reply to comment," Opt. Express 12, 970-971 (2004).
    [CrossRef] [PubMed]
  15. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
  16. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  17. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
    [CrossRef] [PubMed]
  18. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
    [CrossRef] [PubMed]
  19. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  20. K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000).
    [CrossRef]
  21. K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
    [CrossRef]
  22. T. G. Brown, "Inhomogeneous polarization in optical system design," in International Optical Design Conference, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 198-205 (2002).
    [CrossRef]
  23. D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
    [CrossRef]
  24. T. Dabbs and M. Glass, "Fiber-optic confocal microscope: FOCON," Appl. Opt. 31, 3030-3035 (1992).
    [CrossRef] [PubMed]
  25. M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J. Opt. Soc. Am. A 8, 1755-1761 (1991).
    [CrossRef]
  26. J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).
  27. D. Nyyssonen, "Theory of optical detection and imaging of thick layers," J. Opt. Soc. Am. 72, 1425-1436 (1982).
    [CrossRef]
  28. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  29. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction--E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983).
    [CrossRef]
  30. M. G. Moharam and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 73, 1105-1112 (1983).
    [CrossRef]
  31. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  32. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  33. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," J. Opt. Soc. Am. A 12, 1087-1096 (1995).
    [CrossRef]
  34. D. Biss and T. Brown, "Primary aberrations in focused radially polarized vortex beams," Opt. Express 12, 384-393 (2004).
    [CrossRef] [PubMed]
  35. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

2004 (4)

2003 (3)

D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
[CrossRef] [PubMed]

D. Biss and T. Brown, "Polarization vortex driven second harmonic generation," Opt. Lett. 28, 923-925 (2003).
[CrossRef] [PubMed]

2002 (1)

T. G. Brown, "Inhomogeneous polarization in optical system design," in International Optical Design Conference, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 198-205 (2002).
[CrossRef]

2001 (5)

K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
[CrossRef]

D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

2000 (3)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000).
[CrossRef]

1996 (2)

1995 (1)

1994 (1)

1992 (1)

1991 (1)

1990 (1)

J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).

1986 (1)

1983 (2)

1982 (2)

1981 (1)

1955 (1)

F. H. Smith, "Microscopic interferometry," Research 8, 385-395 (1955).

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

Biss, D.

Biss, D. P.

D. P. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface: reply to comment," Opt. Express 12, 970-971 (2004).
[CrossRef] [PubMed]

D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
[CrossRef]

K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
[CrossRef]

Braat, J.

Brown, T.

Brown, T. G.

D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
[CrossRef]

T. G. Brown, "Inhomogeneous polarization in optical system design," in International Optical Design Conference, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 198-205 (2002).
[CrossRef]

K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000).
[CrossRef]

Choudhury, A.

Dabbs, T.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Gan, X.

Gaylord, T. K.

Glass, M.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Gu, M.

Hall, D. G.

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Inoué, S.

S. Inoué and R. Oldenbourg, "Microscopes," in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 17, p. 25.

Jordan, R. H.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Moharam, M. G.

Morris, G. M.

Munro, P.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

Nyyssonen, D.

Oldenbourg, R.

S. Inoué and R. Oldenbourg, "Microscopes," in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 17, p. 25.

Peng, S.

Pereira, S.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
[CrossRef] [PubMed]

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J. Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).

Sheridan, J. T.

J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).

Slayter, E. M.

E. M. Slayter, Optical Methods in Biology (Wiley, 1970), pp. 318-340.

Smith, F. H.

F. H. Smith, "Microscopic interferometry," Research 8, 385-395 (1955).

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Török, P.

van de Nes, A.

Webb, R. H.

R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[CrossRef]

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, 1990), Chap. 1, pp. 1-20.
[CrossRef]

Youngworth, K.

Youngworth, K. S.

D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
[CrossRef]

K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light--theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (3)

Opt. Commun. (2)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Optik (1)

J. T. Sheridan and C. J. R. Sheppard, "An examination of the theories for the calculation of diffraction by square-wave gratings. 1. Thickness and period variations for normal incidence," Optik (Weimar) 85, 25-32 (1990).

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003); URL, http://link.aps.org/abstract/PRL/v91/e233901.
[CrossRef] [PubMed]

Proc. SPIE (4)

K. S. Youngworth and T. G. Brown, "Inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 75-85 (2000).
[CrossRef]

K. S. Youngworth, D. P. Biss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001).
[CrossRef]

T. G. Brown, "Inhomogeneous polarization in optical system design," in International Optical Design Conference, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 198-205 (2002).
[CrossRef]

D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[CrossRef]

Research (1)

F. H. Smith, "Microscopic interferometry," Research 8, 385-395 (1955).

Other (5)

T. Wilson, Confocal Microscopy (Academic, 1990), Chap. 1, pp. 1-20.
[CrossRef]

S. Inoué and R. Oldenbourg, "Microscopes," in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 17, p. 25.

E. M. Slayter, Optical Methods in Biology (Wiley, 1970), pp. 318-340.

Ref. , pp. 25-27.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Cross section of the polarization patterns for radially and azimuthally polarized collimated beams. The filled circle in the center of the beam represents the null of the vortex and is also the location of the axis of propagation of the beam. For comparison, a linearly polarized beam is shown.

Fig. 2
Fig. 2

Illustration of exit pupil for focusing on an edge and on a planar surface.

Fig. 3
Fig. 3

Field lobe pattern perpendicular to the edge in the exit pupil when a radially or an azimuthally polarized beam is focused on a λ / 4 glass ( n = 1.5 ) step. Insets, lobe pattern orientation with respect to the edge, and polarization of the lobe pattern.

Fig. 4
Fig. 4

Field lobe pattern parallel to the edge in the exit pupil when a radially or an azimuthally polarized beam is focused on a λ / 4 glass ( n = 1.5 ) step. Insets, lobe pattern orientation with respect to the edge, and polarization of the lobe pattern.

Fig. 5
Fig. 5

APM: a transparent substrate with trenches of different depths and a patterned chrome layer on top.

Fig. 6
Fig. 6

Exit pupil of the focusing objective with azimuthally polarized illumination. The beam is illuminating an edge.

Fig. 7
Fig. 7

Exit pupil of the focusing objective with azimuthally polarized illumination. The beam is illuminating an edge. The portions of the field that are polarized perpendicular to the edge are shown.

Fig. 8
Fig. 8

Exit pupil of the focusing objective with azimuthally polarized illumination. The beam is illuminating an edge. The portion of the field that is polarized parallel to the edge is shown.

Fig. 9
Fig. 9

Comparison of a confocal image with an azimuthally polarized dark-field image of an integrated circuit. A micrometer bar indicates the dimension.

Fig. 10
Fig. 10

Diagram of the experimental setup for dark-field imaging with polarization vortices.

Fig. 11
Fig. 11

Polarization states at several points in the common-path polarization converter. (a) The first half of the beam converter provides the phase shift for one polarization direction, and (b) the second half phase shifts the orthogonal polarization.

Fig. 12
Fig. 12

Dark-field image taken with a PCF mode filter. The rectangles have a 3 μm width. The beam was focused with a 100× (N.A., 0.9) objective. The beam was radially polarized.

Fig. 13
Fig. 13

Intensity plots of APM shallow trenches for the trench widths shown for azimuthally polarized dark-field imaging. Dotted curves, experimental data; solid curves, theoretical calculations.

Fig. 14
Fig. 14

Intensity plots of APM deep trenches for the trench widths shown for azimuthally polarized dark-field imaging. Dotted curves, experimental data; solid curves, theoretical calculations.

Fig. 15
Fig. 15

Intensity plots of APM shallow trenches for the trench widths shown for radially polarized dark-field imaging. Dotted curves, experimental data; solid curves, theoretical calculations.

Fig. 16
Fig. 16

Intensity plots of APM deep trenches for the trench widths shown for radially polarized dark-field imaging. Dotted curves, experimental data; solid curves, theoretical calculations.

Fig. 17
Fig. 17

Dark-field image of similar circular grating structures. The dark-field image was taken with 800 nm light, radial polarization, a PCF mode filter, and 0.9 N . A . objective.

Fig. 18
Fig. 18

Dark-field image with a polarizer inserted before the fiber coupler. The illumination beam is radially polarized with polarization as shown.

Fig. 19
Fig. 19

Comparison of the predicted dark-field line image for radial and azimuthal polarizations. Solid curve, radial polarization; dashed curve, azimuthal polarization. The edges are located at 1 and 1 μm on the horizontal axis of the plot, which corresponds to a 2 μm trench width. The structure of the sample being imaged is the deep trench structure ( 50 nm chrome layer and then a 193 nm deep trench).

Fig. 20
Fig. 20

Predicted measured edge separation from the RCWA dark-field theory for the deep and shallow trenches. The horizontal axis is the actual edge separation, and the vertical axis is the measured edge separation. Dashed curves, the shallow trench; solid curves, the deep trench.

Fig. 21
Fig. 21

Comparison of the theoretically measured edge separation for radially and azimuthally polarized light. Solid curves, radial polarization; dashed curves, azimuthal polarization.

Fig. 22
Fig. 22

Theoretical and experimental measured edge separation for both the shallow and the deep trenches for azimuthally polarized light. Solid curves, theoretically measured edge; open circles, experimental data points.

Fig. 23
Fig. 23

Theoretical and experimental measured edge separation for both the shallow and deep trenches for radially polarized light. Solid curves, theoretically measured edge; open circles, experimental data points.

Fig. 24
Fig. 24

Comparison of theory and experiment for radially and azimuthally polarized dark-field intensity line scan with defocus. A line image of a 5 μm trench is shown in the horizontal direction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E k out = S k out , k in E k in .
E k in = l 0 ( k x , k y ) k z k 1 [ k z k 1 k x k x 2 + k y 2 k z k 1 k y k x 2 + k y 2 k x 2 + k y 2 k 1 ] ,
l 0 ( k x , k y ) = exp ( β 2 k x 2 + k y 2 k 1 2 ) J 1 ( 2 β k x 2 + k y 2 k 1 ) ,
E = k in S k out , k in E k in .
a = N A E × H 0 * · z ^ d A ,

Metrics