Abstract

UV fluorescence and absorption spectroscopy from Bacillus subtilis spores detected proteins and dipicolinic acid (DPA) released into the supernatant after heat treatments ranging from 20° to 90°C. The protein and DPA concentration in the supernatant was greater with higher heat treatment temperatures, undergoing a substantial increase for T60°C, and supporting the theory that spores undergo a phase transition from a glassylike to a rubberylike state at 56°C. Gel electrophoresis detected several small proteins with molecular weights between 6  and   11   kDa. These proteins may be small acid-soluble spore proteins that are present in spores but break down during germination. A 30 kDa protein extracted above 60°C is related to the rubber–glass phase transition.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).
  2. A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation," Appl. Opt. 42, 4080-4087 (2003).
    [Crossref] [PubMed]
  3. A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).
  4. I. Weinryb and R. F. Steiner, "The luminescence of the aromatic amino acids," in Excited States of Proteins and Nucleic Acids, I. Weinryb and R. F. Steiner, eds. (Plenum, 1971), pp. 277-319.
  5. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwar Academic, 1999), p. 696.
  6. M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
    [Crossref] [PubMed]
  7. T. A. Slieman and W. L. Nicholson, "Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation," Appl. Environ. Microbiol. 67, 1274-1279 (2001).
    [Crossref] [PubMed]
  8. R. Nudelman, B. V. Bronk, and S. Efrima, "Fluorescence emission derived from dipicolonic acid, its sodium and calcium salts," Appl. Spectrosc. 54, 445-449 (2000).
    [Crossref]
  9. T. D. Barela and A. D. Sherry, "A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium," Anal. Biochem. 71, 351-357 (1976).
    [Crossref] [PubMed]
  10. A. A. Hindle and E. A. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst (London) 124, 1599-1604 (1999).
    [Crossref]
  11. L. E. Sacks, "Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine," Appl. Environ. Microbiol. 56, 1185-1187 (1990).
    [PubMed]
  12. D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
    [Crossref]
  13. P. Setlow, "Spore germination," Curr. Opin. Microbiol. 6, 550-556 (2003).
    [Crossref] [PubMed]
  14. S. J. Foster and K. Johnstone, "The trigger mechanism of bacterial spore germination," in Regulation of Procariotic Development. Structural and Functional Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, and P. Setlow, eds. (American Society for Microbiology, 1989), pp. 89-108.
  15. A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
    [Crossref] [PubMed]
  16. A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
    [PubMed]
  17. T. Hashimoto and S. F. Conti, "Ultrastructural changes associated with activation and germination of bacillus cereus T spores," J. Bacteriol. 105, 361-368 (1971).
  18. P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
    [Crossref]
  19. R. G. Leuschner and P. J. Lillford, "Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis," Lett. Appl. Microbiol. 29, 228-232 (1999).
    [Crossref] [PubMed]
  20. R. G. Leuschner and P. J. Lillford, "Thermal properties of bacterial spores and biopolymers," Int. J. Food Microbiol. 80, 131-143 (2002).
    [Crossref] [PubMed]
  21. B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
    [PubMed]
  22. V. Sapru and T. P. Labuza, "Glassy state in bacterial spores predicted by polymer glass-transition theory," J. Food Sci. 58, 445-448 (1993).
    [Crossref]
  23. B. S. Panigrahi, "A fluorimetric study of terbium, europium and dysprosium in aqueus solution using pyridine carboxylic acids as ligands," J. Alloys Compd. 334, 228-231 (2002).
    [Crossref]
  24. J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
    [Crossref]

2005 (2)

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
[Crossref] [PubMed]

2003 (2)

2002 (3)

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

R. G. Leuschner and P. J. Lillford, "Thermal properties of bacterial spores and biopolymers," Int. J. Food Microbiol. 80, 131-143 (2002).
[Crossref] [PubMed]

B. S. Panigrahi, "A fluorimetric study of terbium, europium and dysprosium in aqueus solution using pyridine carboxylic acids as ligands," J. Alloys Compd. 334, 228-231 (2002).
[Crossref]

2001 (2)

M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
[Crossref] [PubMed]

T. A. Slieman and W. L. Nicholson, "Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation," Appl. Environ. Microbiol. 67, 1274-1279 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (2)

A. A. Hindle and E. A. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst (London) 124, 1599-1604 (1999).
[Crossref]

R. G. Leuschner and P. J. Lillford, "Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis," Lett. Appl. Microbiol. 29, 228-232 (1999).
[Crossref] [PubMed]

1997 (1)

D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
[Crossref]

1995 (2)

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

1993 (1)

V. Sapru and T. P. Labuza, "Glassy state in bacterial spores predicted by polymer glass-transition theory," J. Food Sci. 58, 445-448 (1993).
[Crossref]

1992 (1)

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

1990 (1)

L. E. Sacks, "Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine," Appl. Environ. Microbiol. 56, 1185-1187 (1990).
[PubMed]

1976 (1)

T. D. Barela and A. D. Sherry, "A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium," Anal. Biochem. 71, 351-357 (1976).
[Crossref] [PubMed]

1971 (1)

T. Hashimoto and S. F. Conti, "Ultrastructural changes associated with activation and germination of bacillus cereus T spores," J. Bacteriol. 105, 361-368 (1971).

1964 (1)

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

Alfano, R. R.

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
[Crossref] [PubMed]

A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation," Appl. Opt. 42, 4080-4087 (2003).
[Crossref] [PubMed]

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Alimova, A.

Barela, T. D.

T. D. Barela and A. D. Sherry, "A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium," Anal. Biochem. 71, 351-357 (1976).
[Crossref] [PubMed]

Beaman, T. C.

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

Belliveau, B. H.

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

Bronk, B. V.

Conti, S. F.

T. Hashimoto and S. F. Conti, "Ultrastructural changes associated with activation and germination of bacillus cereus T spores," J. Bacteriol. 105, 361-368 (1971).

Cosloy, S.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Efrima, S.

Evanchik, Z.

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

Fell, J.

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

Foster, S. J.

S. J. Foster and K. Johnstone, "The trigger mechanism of bacterial spore germination," in Regulation of Procariotic Development. Structural and Functional Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, and P. Setlow, eds. (American Society for Microbiology, 1989), pp. 89-108.

Gerhardt, P.

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

Gillespie, J. B.

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

Gottlieb, P.

A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
[Crossref] [PubMed]

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

Hall, E. A.

A. A. Hindle and E. A. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst (London) 124, 1599-1604 (1999).
[Crossref]

Halvorson, H. O.

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

Hashimoto, T.

T. Hashimoto and S. F. Conti, "Ultrastructural changes associated with activation and germination of bacillus cereus T spores," J. Bacteriol. 105, 361-368 (1971).

Hastings, J. W.

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

Hindle, A. A.

A. A. Hindle and E. A. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst (London) 124, 1599-1604 (1999).
[Crossref]

Huang, Z. Z.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Johnstone, K.

S. J. Foster and K. Johnstone, "The trigger mechanism of bacterial spore germination," in Regulation of Procariotic Development. Structural and Functional Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, and P. Setlow, eds. (American Society for Microbiology, 1989), pp. 89-108.

Katz, A.

Keynan, A.

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

Kumar, A. S.

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

Labuza, T. P.

V. Sapru and T. P. Labuza, "Glassy state in bacterial spores predicted by polymer glass-transition theory," J. Food Sci. 58, 445-448 (1993).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwar Academic, 1999), p. 696.

Lamture, J. B.

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

Leuschner, R. G.

R. G. Leuschner and P. J. Lillford, "Thermal properties of bacterial spores and biopolymers," Int. J. Food Microbiol. 80, 131-143 (2002).
[Crossref] [PubMed]

R. G. Leuschner and P. J. Lillford, "Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis," Lett. Appl. Microbiol. 29, 228-232 (1999).
[Crossref] [PubMed]

Lillford, P. J.

R. G. Leuschner and P. J. Lillford, "Thermal properties of bacterial spores and biopolymers," Int. J. Food Microbiol. 80, 131-143 (2002).
[Crossref] [PubMed]

R. G. Leuschner and P. J. Lillford, "Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis," Lett. Appl. Microbiol. 29, 228-232 (1999).
[Crossref] [PubMed]

McCormick, S. A.

McGown, L. B.

D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
[Crossref]

Minko, G.

Nicholas, F.

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

Nicholson, W. L.

T. A. Slieman and W. L. Nicholson, "Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation," Appl. Environ. Microbiol. 67, 1274-1279 (2001).
[Crossref] [PubMed]

Nudelman, R.

Paidhungat, M.

M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
[Crossref] [PubMed]

Panigrahi, B. S.

B. S. Panigrahi, "A fluorimetric study of terbium, europium and dysprosium in aqueus solution using pyridine carboxylic acids as ligands," J. Alloys Compd. 334, 228-231 (2002).
[Crossref]

Pankratz, H. S.

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

Paul, M.

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

Pellegrino, P. M.

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

Ragkousi, K.

M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
[Crossref] [PubMed]

Rosen, D. L.

D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
[Crossref]

Rosen, R. B.

Rudolph, E.

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
[Crossref] [PubMed]

Sacks, L. E.

L. E. Sacks, "Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine," Appl. Environ. Microbiol. 56, 1185-1187 (1990).
[PubMed]

Sapru, V.

V. Sapru and T. P. Labuza, "Glassy state in bacterial spores predicted by polymer glass-transition theory," J. Food Sci. 58, 445-448 (1993).
[Crossref]

Savage, H. E.

Setlow, P.

P. Setlow, "Spore germination," Curr. Opin. Microbiol. 6, 550-556 (2003).
[Crossref] [PubMed]

M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
[Crossref] [PubMed]

Shah, M.

Sharpless, C.

D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
[Crossref]

Sherry, A. D.

T. D. Barela and A. D. Sherry, "A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium," Anal. Biochem. 71, 351-357 (1976).
[Crossref] [PubMed]

Slieman, T. A.

T. A. Slieman and W. L. Nicholson, "Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation," Appl. Environ. Microbiol. 67, 1274-1279 (2001).
[Crossref] [PubMed]

Steiner, J. C.

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J. C. Steiner, and R. R. Alfano, "In situ determination of refractive index and size of Bacillus spores by light transmission," Opt. Lett. 30, 589-591 (2005).
[Crossref] [PubMed]

Steiner, R. F.

I. Weinryb and R. F. Steiner, "The luminescence of the aromatic amino acids," in Excited States of Proteins and Nucleic Acids, I. Weinryb and R. F. Steiner, eds. (Plenum, 1971), pp. 277-319.

Tang, G. C.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Weinryb, I.

I. Weinryb and R. F. Steiner, "The luminescence of the aromatic amino acids," in Excited States of Proteins and Nucleic Acids, I. Weinryb and R. F. Steiner, eds. (Plenum, 1971), pp. 277-319.

Wensel, T. G.

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

Will, D. V.

Xu, M.

Yang, Y. L.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Zhou, F.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

Zhou, Z. H.

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

Anal. Biochem. (1)

T. D. Barela and A. D. Sherry, "A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium," Anal. Biochem. 71, 351-357 (1976).
[Crossref] [PubMed]

Anal. Chem. (1)

D. L. Rosen, C. Sharpless, and L. B. McGown, "Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence," Anal. Chem. 69, 1082-1085 (1997).
[Crossref]

Anal. Chim. Acta (1)

P. M. Pellegrino, J. Fell, F. Nicholas, and J. B. Gillespie, "Enhanced spore detection using dipicolinate extraction techniques," Anal. Chim. Acta 455, 167-177 (2002).
[Crossref]

Analyst (1)

A. A. Hindle and E. A. Hall, "Dipicolinic acid (DPA) assay revisited and appraised for spore detection," Analyst (London) 124, 1599-1604 (1999).
[Crossref]

Appl. Environ. Microbiol. (2)

L. E. Sacks, "Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine," Appl. Environ. Microbiol. 56, 1185-1187 (1990).
[PubMed]

T. A. Slieman and W. L. Nicholson, "Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation," Appl. Environ. Microbiol. 67, 1274-1279 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Curr. Opin. Microbiol. (1)

P. Setlow, "Spore germination," Curr. Opin. Microbiol. 6, 550-556 (2003).
[Crossref] [PubMed]

Inorg. Chem. (1)

J. B. Lamture, Z. H. Zhou, A. S. Kumar, and T. G. Wensel, "Luminescence properties of terbium(III) complexes with 4-substituted dipicolinic acid analogs," Inorg. Chem. 34, 864-869 (1995).
[Crossref]

Int. J. Food Microbiol. (1)

R. G. Leuschner and P. J. Lillford, "Thermal properties of bacterial spores and biopolymers," Int. J. Food Microbiol. 80, 131-143 (2002).
[Crossref] [PubMed]

J. Alloys Compd. (1)

B. S. Panigrahi, "A fluorimetric study of terbium, europium and dysprosium in aqueus solution using pyridine carboxylic acids as ligands," J. Alloys Compd. 334, 228-231 (2002).
[Crossref]

J. Bacteriol. (4)

B. H. Belliveau, T. C. Beaman, H. S. Pankratz, and P. Gerhardt, "Heat killing of bacterial spores analyzed by differential scanning calorimetry," J. Bacteriol. 174, 4463-4474 (1992).
[PubMed]

A. Keynan, Z. Evanchik, H. O. Halvorson, and J. W. Hastings, "Activation of bacterial endospores," J. Bacteriol. 88, 313-318 (1964).
[PubMed]

T. Hashimoto and S. F. Conti, "Ultrastructural changes associated with activation and germination of bacillus cereus T spores," J. Bacteriol. 105, 361-368 (1971).

M. Paidhungat, K. Ragkousi, and P. Setlow, "Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate," J. Bacteriol. 183, 4886-4893 (2001).
[Crossref] [PubMed]

J. Food Sci. (1)

V. Sapru and T. P. Labuza, "Glassy state in bacterial spores predicted by polymer glass-transition theory," J. Food Sci. 58, 445-448 (1993).
[Crossref]

Lett. Appl. Microbiol. (1)

R. G. Leuschner and P. J. Lillford, "Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis," Lett. Appl. Microbiol. 29, 228-232 (1999).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (5)

S. J. Foster and K. Johnstone, "The trigger mechanism of bacterial spore germination," in Regulation of Procariotic Development. Structural and Functional Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, and P. Setlow, eds. (American Society for Microbiology, 1989), pp. 89-108.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, and R. R. Alfano, "Spectroscopic properties of tryptophan and bacteria," in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE 2387, 169-172 (1995).

A. Alimova, A. Katz, M. Paul, E. Rudolph, P. Gottlieb, J. C. Steiner, and R. R. Alfano, "Fluorescence detection of proteins from Bacillus subtilis spores during heat shock germination," in Advanced Biomedical and Clinical Diagnostic Systems III, W. S. G. Tuan Vo-Dinh, D. A. Benaron, and G. E. Cohn, eds. Proc. SPIE 5692, 337-340 (2005).

I. Weinryb and R. F. Steiner, "The luminescence of the aromatic amino acids," in Excited States of Proteins and Nucleic Acids, I. Weinryb and R. F. Steiner, eds. (Plenum, 1971), pp. 277-319.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwar Academic, 1999), p. 696.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Emission spectra (λex = 290 nm) from spores activated at 80 °C and controls. Resuspended spores were separated from the supernatant by centrifugation.

Fig. 2
Fig. 2

(A) Supernatant emission spectra (λex = 275 nm) after heat treatments of 20°–90 °C. (B) Supernatant emission intensity at 350 nm (trp peak) and 305 nm (tyr peak) for different heat treatment temperatures.

Fig. 3
Fig. 3

Integrated intensities of nine emission and six excitation spectra from the supernatants. Tyr emission can be observed in the 80 °C spore supernatant in the excitation scans at 300 and 310 nm emission.

Fig. 4
Fig. 4

(A) Optical density of spore supernatants (0.5 cm path). (B) Optical density at peak wavelengths plotted as a function of heat temperature: the 263 and 270 nm absorption peaks have a larger DPA contribution whereas the 278 and 289 nm peaks have a larger trp contribution.

Fig. 5
Fig. 5

(A) Emission spectra of supernatant with Tb3+:DPA. (B) Integrated intensity of 490 and 545 nm Tb3+:DPA bands.

Fig. 6
Fig. 6

Silver-stained SDS-PAGE of extracted proteins. Bands are from 6, 11, and 30 kDa molecular weight proteins. Heat treatment temperatures were (A) 20 °C, (B) 50 °C, (C) 60 °C, (D) 70 °C, (E) 80 °C.

Metrics