Abstract

The absorption spectra of dye-doped polymer thin films made from a variety of five dyes and six matrices, either organic or organomineral, are analyzed to evaluate the residual absorption in the red wavelength tail and in particular at amplified spontaneous emission (ASE) wavelengths. An absorption cutoff wavelength is defined as the extrapolated wavelength at which the absorption losses are expected to become negligible compared to the structure losses. Such absorption-spectrum-extrapolated wavelengths are compared to the ASE wavelengths and found to correlate for most of the dye–matrix couples. The propagation losses of PM597-doped organic polymers are also measured and accordingly found to increase with the glass transition temperature of the host matrix.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplified spontaneous emission and recoverable photodegradation in polymer doped with Disperse Orange 11

Brent F. Howell and Mark G. Kuzyk
J. Opt. Soc. Am. B 19(8) 1790-1793 (2002)

Propagation characteristics and wavelength tuning of amplified spontaneous emission from dye-doped polymer

K. Geetha, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan
Appl. Opt. 45(4) 764-769 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription