Abstract

A theoretical analysis of the characteristics of an external cavity He–Ne laser with asymmetric feedback induced by the misalignment of an external feedback mirror is proposed. The theoretical model considers both the multiple reflections and the phase variation caused by the asymmetric external cavity. It is found that the phase variation is of importance in determining the effects of asymmetric feedback. The three-order asymmetric feedback effects are experimentally observed and can be interpreted well by this model. The fringe frequency of the asymmetric optical feedback system can also be increased. The experimental results are in good agreement with the theoretical analysis. The theoretical and experimental results offer a potential increase in the resolution of an optical feedback system with asymmetric feedback.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).
  2. M. J. Rudd, "A laser Doppler velocimeter employing the laser as a mixer-oscillator," J. Phys. E 1, 723-726 (1968).
    [CrossRef]
  3. J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
    [CrossRef] [PubMed]
  4. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).
    [CrossRef] [PubMed]
  5. R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
    [CrossRef]
  6. G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
    [CrossRef]
  7. M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
    [CrossRef]
  8. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
    [CrossRef]
  9. W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
    [CrossRef] [PubMed]
  10. S. Merlo and S. Donati, "Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer," IEEE J. Quantum Electron. 33, 527-531 (1997).
    [CrossRef]
  11. F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37, 6684-6689 (1998).
    [CrossRef]
  12. P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
    [CrossRef]
  13. M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
    [CrossRef]
  14. C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
    [CrossRef]
  15. P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
    [CrossRef]
  16. G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
    [CrossRef]
  17. G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
    [CrossRef]
  18. S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
    [CrossRef]
  19. S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
    [CrossRef]
  20. L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
    [CrossRef]
  21. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
    [CrossRef]
  22. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
    [CrossRef]
  23. D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
    [CrossRef]
  24. P. J. D. Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988).
    [CrossRef] [PubMed]
  25. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  26. L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
    [CrossRef]
  27. M. Wang, "Fourier transform method for self-mixing interference signal analysis," Opt. Laser Technol. 33, 409-416 (2001).
    [CrossRef]
  28. W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
    [CrossRef]
  29. G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
    [CrossRef]
  30. D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
    [CrossRef]
  31. Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
    [CrossRef]
  32. R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
    [CrossRef]
  33. W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
    [CrossRef]

2006 (3)

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

2005 (2)

L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
[CrossRef]

L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
[CrossRef]

2004 (2)

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

2003 (4)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
[CrossRef]

2002 (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

2001 (4)

G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
[CrossRef]

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

M. Wang, "Fourier transform method for self-mixing interference signal analysis," Opt. Laser Technol. 33, 409-416 (2001).
[CrossRef]

S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
[CrossRef]

2000 (1)

S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

1999 (1)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

1998 (2)

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37, 6684-6689 (1998).
[CrossRef]

1997 (1)

S. Merlo and S. Donati, "Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer," IEEE J. Quantum Electron. 33, 527-531 (1997).
[CrossRef]

1996 (1)

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

1995 (1)

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

1993 (1)

1989 (1)

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

1988 (1)

1986 (1)

1984 (2)

J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
[CrossRef] [PubMed]

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

1968 (1)

M. J. Rudd, "A laser Doppler velocimeter employing the laser as a mixer-oscillator," J. Phys. E 1, 723-726 (1968).
[CrossRef]

1963 (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Addy, R. C.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Bosch, T.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37, 6684-6689 (1998).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Bozzi-Pietra, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

Castellini, P.

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

Churnside, J. H.

Cui, L.

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

de Groot, P.

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

Deng, K.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Donati, S.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
[CrossRef]

S. Merlo and S. Donati, "Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer," IEEE J. Quantum Electron. 33, 527-531 (1997).
[CrossRef]

Fei, L.

L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
[CrossRef]

L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
[CrossRef]

Gallatin, G. M.

Giulian, G.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Giuliani, G.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
[CrossRef]

Gouaux, F.

Grattan, K. T. V.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Groot, P. J. D.

Ito, S.

S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
[CrossRef]

S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

Jaskorzynska, B.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

King, P. G. R.

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lai, G.

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lenstra, D.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
[CrossRef]

Li, Y.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

Liu, G.

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

Lu, C.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Macomber, S. H.

Mao, W.

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

Mcinerney, J.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Merlo, S.

S. Merlo and S. Donati, "Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer," IEEE J. Quantum Electron. 33, 527-531 (1997).
[CrossRef]

Mochizuki, A.

Norgia, M.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Osinski, M.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Otsuka, K.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Ozdemir, S. K.

S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
[CrossRef]

S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

Palmer, A. W.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Park, J.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Passerini, M.

G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
[CrossRef]

Revel, G. M.

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

Rudd, M. J.

M. J. Rudd, "A laser Doppler velocimeter employing the laser as a mixer-oscillator," J. Phys. E 1, 723-726 (1968).
[CrossRef]

Seo, D.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Servagent, N.

Shinohara, S.

S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
[CrossRef]

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Steward, G. J.

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Sumi, M.

Takamiya, S.

S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

Tan, Y.

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

Tomasini, E. P.

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

Van, V. M.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
[CrossRef]

Wang, J.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Wang, M.

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

M. Wang, "Fourier transform method for self-mixing interference signal analysis," Opt. Laser Technol. 33, 409-416 (2001).
[CrossRef]

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Yao, J.

Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
[CrossRef]

Ye, H.

Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
[CrossRef]

Yoshida, H.

Yu, Y.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
[CrossRef]

Zhang, L.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

Zhang, S.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

Zhu, J.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

Zong, X.

L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
[CrossRef]

L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Chin. Phys. (1)

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

S. Merlo and S. Donati, "Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer," IEEE J. Quantum Electron. 33, 527-531 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. K. Ozdemir, S. Takamiya, and S. Ito, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

J. Lightwave Technol. (2)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

J. Opt. A (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

Y. Yu, H. Ye, and J. Yao, "Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels," J. Opt. A, Pure Appl. Opt. 5, 117-122 (2003).
[CrossRef]

J. Phys. E (1)

M. J. Rudd, "A laser Doppler velocimeter employing the laser as a mixer-oscillator," J. Phys. E 1, 723-726 (1968).
[CrossRef]

Meas. Sci. Technol. (2)

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

New Sci. (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Opt. Commun. (4)

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

L. Fei, Y. Li, and X. Zong, "Measurement of small intracavity phase anisotropy in a laser based on optical feedback," Opt. Commun. 249, 255-260 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser," Opt. Commun. 221, 387-393 (2003).
[CrossRef]

L. Fei, S. Zhang, and X. Zong, "Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity," Opt. Commun. 246, 505-510 (2005).
[CrossRef]

Opt. Eng. (3)

S. K. Ozdemir, S. Shinohara, and S. Ito, "Compact optical instrument for surface classification using self-mixing interference in a laser diode," Opt. Eng. 40, 38-43 (2001).
[CrossRef]

G. Giuliani, S. Donati, and M. Passerini, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
[CrossRef]

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

Opt. Express. (1)

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express. 14, 182-189 (2006).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

M. Wang, "Fourier transform method for self-mixing interference signal analysis," Opt. Laser Technol. 33, 409-416 (2001).
[CrossRef]

Physica C (1)

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica C 125, 255-264 (1984).
[CrossRef]

Shock Vib. Dig. (1)

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to study the effects of asymmetric feedback.

Fig. 2
Fig. 2

Simulated results of the laser intensity modulation with three-order asymmetric feedback at different ϕ.

Fig. 3
Fig. 3

Experimental results of laser intensity modulation with three-order asymmetric feedback at different phase variations.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = r 1 r 2   exp ( i ω τ L + 2 g L ) E 0 ( t ) + r 1 t 2 r 3 t 2 ×   exp [ i ( ω τ L + ω τ l + δ l ) + 2 g L ] E 0 ( t ) + +   r 1 t 2 ( r 3 r 2 ) q 1 r 3 t 2 f q   exp [ i ( ω τ L + ω q τ l + δ q ) +   2 g L ] E 0 ( t ) ,
δ q = ω ( m = 1 q l m 2 q l ) / c ,
r 1 r 2 { 1 + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   exp [ i ( m ω τ l + δ m ) ] } × exp ( i ω τ L + 2 g L ) = 1 ,
r 1 r 2 { [ 1 + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   cos ( m ω τ l + δ m ) ] 2 + [ t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   sin ( m ω τ l + δ m ) ] 2 } 1 / 2 × exp ( i ω τ L + 2 g L ) exp ( i θ ) = 1 ,
tan ( θ ) = t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   sin ( m ω τ l + δ m ) 1 + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   cos ( m ω τ l + δ m ) .
1 + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q - 1 f m   cos ( m ω τ l + δ m ) t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q - 1 f m sin ( m ω τ l + δ m ) .
r 1 r 2 [ 1 + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   cos ( m ω τ l + δ m ) ] × exp ( 2 g L ) exp ( i ω τ L + i θ ) = 1.
ω τ L + θ = 2 M π .
g = 1 2 L [ ln ( r 1 r 2 ) + t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m ×  cos ( m ω τ l + δ m ) ] ,
g 0 = 1 2 L  ln ( r 1 r 2 ) .
Δ g = g g 0 = 1 2 L [ t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m ×   cos ( m ω τ l + δ m ) ] .
I = I 0 ( 1 K Δ g ) ,
I = I 0 { 1 + K 2 L [ t 2 2 r 3 r 2 m = 1 q ( r 2 r 3 ) q 1 f m   cos ( m ω τ l + δ m ) ] } .
I = I 0 [ 1 + K 2 L t 2 2 r 3 r 2 f 1   cos ( ω τ l + δ 1 ) ] .
I = I 0 { 1 + K 2 L [ t 2 2 r 3 r 2  cos ( ω τ l + δ 1 ) + t 2 2 r 3 2 × cos ( 2 ω τ l + δ 2 ) + t 2 2 r 2 2 r 3 3 f 3   cos ( 3 ω τ l + δ 3 ) ] } .

Metrics