Abstract

In digital holographic microscopy, shot noise is an intrinsic part of the recording process with the digital camera. We present a study based on simulations and real measurements describing the shot-noise influence in the quality of the reconstructed phase images. Different configurations of the reference wave and the object wave intensities will be discussed, illustrating the detection limit and the coherent amplification of the object wave. The signal-to-noise ratio (SNR) calculation of the reconstructed phase images based on the decision statistical theory is derived from a model for image quality estimation proposed by Wagner and Brown [Phys. Med. Biol. 30, 489 (1985)]. It will be shown that a phase image with a SNR above 10 can be obtained with a mean intensity lower than 10 photons per pixel and per hologram coming from the observed object. Experimental measurements on a glass–chrome probe will be presented to illustrate the main results of the simulations.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge
Opt. Lett. 30(5) 468-470 (2005)

Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

Benjamin Rappaz, Pierre Marquet, Etienne Cuche, Yves Emery, Christian Depeursinge, and Pierre J. Magistretti
Opt. Express 13(23) 9361-9373 (2005)

Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition

Jonas Kühn, Tristan Colomb, Frédéric Montfort, Florian Charrière, Yves Emery, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Opt. Express 15(12) 7231-7242 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription