Abstract

Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hintenberger and R. Winston, "Efficient light coupler for threshold Cernkov counters," Rev. Sci. Instrum. 30, 1094-1095 (1966).
    [CrossRef]
  2. R. Winston, "Light collection within the framework of geometrical optics," J. Opt. Soc. Am. 60, 245-247 (1970).
    [CrossRef]
  3. R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).
  4. D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
    [CrossRef]
  5. P. T. Ong, J. M. Gordon, and A. Rabl, "Tailoring lighting reflectors to prescribed illuminance distributions: compact partial-involute designs," Appl. Opt. 34, 7877-7887 (1995).
    [CrossRef] [PubMed]
  6. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
    [CrossRef]
  7. H. A. Buchdahl, An Introduction to Hamiltonian Optics (Dover, 1993).
  8. J. C. Miñano, "Cylindrical concentrators as a limit case of toroidal concentrators," Appl. Opt. 23, 2017-2020 (1984).
    [CrossRef] [PubMed]
  9. W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
    [CrossRef]
  10. C. J. Sletten, F. S. Holt, and S. B. Herskovitz, "Wide-angle lenses and image collapsing subreflectors for nontracking solar collectors," Appl. Opt. 19, 1439-1453 (1980).
    [CrossRef] [PubMed]
  11. H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
    [CrossRef]
  12. C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
    [CrossRef]
  13. T. Alahautala and R. Hernberg, "Generation of uniform light by use of diode lasers and a truncated paraboloid with a Lambertian scatterer," Appl. Opt. 43, 949-954 (2004).
    [CrossRef] [PubMed]
  14. A. García-Botella, Ph.D. dissertation (Universidad Complutense de Madrid, 2000).
  15. TracePro software, http://www.lambdares.com/.

2005

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

2004

T. Alahautala and R. Hernberg, "Generation of uniform light by use of diode lasers and a truncated paraboloid with a Lambertian scatterer," Appl. Opt. 43, 949-954 (2004).
[CrossRef] [PubMed]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

1998

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

1997

H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
[CrossRef]

1996

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

1995

1984

1980

1970

1966

H. Hintenberger and R. Winston, "Efficient light coupler for threshold Cernkov counters," Rev. Sci. Instrum. 30, 1094-1095 (1966).
[CrossRef]

Alahautala, T.

Benitez, P.

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Benítez, P.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Bingham, C.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Bliss, J.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Bortz, J. C.

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Buchdahl, H. A.

H. A. Buchdahl, An Introduction to Hamiltonian Optics (Dover, 1993).

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Cross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

García-Botella, A.

A. García-Botella, Ph.D. dissertation (Universidad Complutense de Madrid, 2000).

Gordon, J. M.

H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
[CrossRef]

P. T. Ong, J. M. Gordon, and A. Rabl, "Tailoring lighting reflectors to prescribed illuminance distributions: compact partial-involute designs," Appl. Opt. 34, 7877-7887 (1995).
[CrossRef] [PubMed]

Heremans, P.

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Hernberg, R.

Herskovitz, S. B.

Hintenberger, H.

H. Hintenberger and R. Winston, "Efficient light coupler for threshold Cernkov counters," Rev. Sci. Instrum. 30, 1094-1095 (1966).
[CrossRef]

Holt, F. S.

Jenkins, D.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Kuijk, M.

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

Laxen, M.

H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
[CrossRef]

Lewandowski, A.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Miñano, J. C.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

J. C. Miñano, "Cylindrical concentrators as a limit case of toroidal concentrators," Appl. Opt. 23, 2017-2020 (1984).
[CrossRef] [PubMed]

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

Muschaweck, J.

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

O'Gallagher, J.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Ong, P. T.

Rabl, A.

Ries, H.

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
[CrossRef]

Rooman, C.

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

Shatz, N.

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Sletten, C. J.

Spirkl, W.

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

Vounckx, R.

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

Winston, R.

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

R. Winston, "Light collection within the framework of geometrical optics," J. Opt. Soc. Am. 60, 245-247 (1970).
[CrossRef]

H. Hintenberger and R. Winston, "Efficient light coupler for threshold Cernkov counters," Rev. Sci. Instrum. 30, 1094-1095 (1966).
[CrossRef]

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Appl. Opt.

J. Opt. Soc. Am.

J. Sol. Energy Eng.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, "Solar concentration of 50,000 achieved with output power approaching 1 kW," J. Sol. Energy Eng. 118, 141-145 (1996).
[CrossRef]

Opt. Eng.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Cross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng. 43, 1489-1502 (2004).
[CrossRef]

C. Rooman, M. Kuijk, R. Vounckx, and P. Heremans, "Reflective-refractive microlens for efficient light emitting diode to fiber coupling," Opt. Eng. 44, 095005 (2005).
[CrossRef]

Rev. Sci. Instrum.

H. Hintenberger and R. Winston, "Efficient light coupler for threshold Cernkov counters," Rev. Sci. Instrum. 30, 1094-1095 (1966).
[CrossRef]

Sol. Energy

W. Spirkl, H. Ries, J. Muschaweck, and R. Winston, "Nontracking solar concentrators," Sol. Energy 62, 113-120 (1998).
[CrossRef]

H. Ries, J. M. Gordon, and M. Laxen, "High-flux photovoltaic solar concentrator with kaleidoscope-based optical design," Sol. Energy 60, 11-16 (1997).
[CrossRef]

Other

A. García-Botella, Ph.D. dissertation (Universidad Complutense de Madrid, 2000).

TracePro software, http://www.lambdares.com/.

H. A. Buchdahl, An Introduction to Hamiltonian Optics (Dover, 1993).

R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Elliptic cylindrical coordinate system ( u , v , z ) with focal length c used to build ECs.

Fig. 2
Fig. 2

Geometrical parameters of a nonhomofocal elliptical CPC with a circular exit aperture.

Fig. 3
Fig. 3

Geometrical parameters of a nonhomofocal elliptical CPC with a circular entrance aperture.

Fig. 4
Fig. 4

Three-dimensional image for homofocal ECPC with a transversal profile of a 20° CPC, an exit aperture of 2 b = 20   mm , and a focal length of c = 30   mm .

Fig. 5
Fig. 5

Transversal transmission-angle curves for several homofocal ECPCs: ( -    - ) , c 1 = 99   mm ; ( ) , c 2 = 60   mm ; ( -   - ) , c 3 = 30   mm ; and ( ) , c 4 = 0 (3D CPC).

Fig. 6
Fig. 6

Longitudinal transmission-angle curves for several homofocal ECPCs: ( -     - ) , c 1 = 99   mm ; ( ) , c 2 = 60   mm ; ( -   - ) , c 3 = 30   mm ; and ( ) , c 4 = 0 ( 3 D   CPC ) .

Fig. 7
Fig. 7

Three-dimensional image for nonhomofocal ECPC with a 40° CPC transversal profile, a 20° CPC longitudinal profile, and a circular exit aperture with a radius of 10   mm .

Fig. 8
Fig. 8

Transversal ( ) and longitudinal ( -   - ) transmission-angle curve for nonhomofocal ECPCs.

Tables (1)

Tables Icon

Table 1 Relationship between θ a and θ b for Nonhomofocal (●) and Homofocal (○) Concentrators

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n 2 d x d y d L d M = n 2 d x d y d L d M ,
n 2 4 π a b   sin   θ a   sin   θ b = n 2 4 π a b   sin   θ a   sin   θ b ,
C max = A A = π a b π a b = ( n n ) 2 1 sin   θ a 1 sin   θ b .
( n n ) 2 1 sin   θ b < ( n n ) 2 1 sin   θ a 1 sin   θ b < ( n n   sin   θ b ) 2 ,
x = c   cosh ( u ) cos ( v ) ,
y = c   sinh ( u ) sin ( v ) ,
z = z ,
h = u min k v ,
λ = cosh ( u ) ,
μ = cos ( v ) ,
λ 2 = 1 2 { ( x 2 + y 2 c 2 + 1 ) + [ ( x 2 + y 2 c 2 + 1 ) 2 4 x 2 c 2 ] 1 / 2 } ,
n n   sin   θ a = a a > b b = n n   sin   θ b ,
n n   sin   θ a = a a < b b = n n   sin   θ b ;
( u   cos   θ max + z   sin   θ max ) 2 + 2 u 0 ( 1 + sin   θ max ) 2 u
2 u 0   cos   θ max ( 2 + sin   θ max ) 2 z u 0 2 ( 1 + sin   θ max )
× ( 3 + sin   θ max ) = 0 ,

Metrics