Abstract

Experimental observations of the simultaneous presence of a polaritonic and a photonic gap in a three-dimensional photonic crystal is reported, to the best of our knowledge, for the first time. The photonic crystal was made of monodispersed silica microspheres sedimented into a face-centered-cubic structure. Silica has a polaritonic gap for wavelengths between 8 and 9.35μm. Four different sphere sizes were used, with diameters of d=0.49, 0.73, 0.99, and 1.57μm. The photonic crystals were studied by normal incidence infrared reflectance measurements in the wavelength interval 0.812μm. Four peaks with the a magnitude of 0.6, originating from the periodicity of the crystal, were recorded in the interval between 1 and 4 μm. Another peak, the polaritonic reflectance peak (0.4), is observed for wavelengths around 9μm for all four crystals.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Klingshirn, Semiconductor Optics, 2nd ed. (Springer-Verlag, 2005).
  2. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
  3. M. Theiss, Scout: Hard- and Software for Optical Spectroscopy, Aachen, 2002.
  4. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).
  5. C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991).
    [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).
  7. K. Sakoda, Optical Properties of Photonic Crystals, Vol. 80 of Springer Series in Optical Sciences (Springer, 2001).
  8. N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
    [CrossRef]
  9. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  10. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  11. J. Dowling, "Photonic and sonic bandgap bibliography," http://home.earthlink.net/∼jpdowling/pbgbib.html#R.
  12. V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
    [CrossRef]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  14. S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  15. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
    [CrossRef]
  16. M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
    [CrossRef]
  17. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
    [CrossRef]
  18. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
    [CrossRef]
  19. W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
    [CrossRef]
  20. V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
    [CrossRef]
  21. O. Toader and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E 70, 046605 (2004).
  22. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).
  23. A. Rung, "Destruction of a polaritonic gap in a 2D photonic crystal," Opt. Commun. 252, 329-335 (2005).
    [CrossRef]
  24. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
    [CrossRef]
  25. R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
    [CrossRef]
  26. G. Gantzounis and N. Stefanou, "Theoretical analysis of three-dimensional polaritonic photonic crystals," Phys. Rev. B 72, 075107 (2005).
  27. H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004).
    [CrossRef]
  28. S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
    [CrossRef]
  29. H. Högström and C. G. Ribbing, "A three-dimensional photonic crystal with a polaritonic gap," presented at the International Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005.
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. Duke Scientific, www.dukescientific.com.
  32. Trafomo AB, Sweden, www.trafomo.se.
  33. Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
    [CrossRef]
  34. P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
    [CrossRef]
  35. H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

2005 (1)

A. Rung, "Destruction of a polaritonic gap in a 2D photonic crystal," Opt. Commun. 252, 329-335 (2005).
[CrossRef]

2004 (2)

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
[CrossRef]

H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

2003 (2)

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

2002 (1)

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

1999 (1)

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1997 (2)

W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
[CrossRef]

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
[CrossRef]

1996 (1)

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

1995 (1)

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

1994 (1)

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

1993 (1)

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

1991 (1)

C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1970 (1)

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

1969 (1)

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Aourag, H.

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).

Astrova, E. V.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Bienstman, P.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

Biswas, R.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Bloembergen, N.

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

De-Fornel, F.

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

Dowling, J.

J. Dowling, "Photonic and sonic bandgap bibliography," http://home.earthlink.net/∼jpdowling/pbgbib.html#R.

Dufour, J. P.

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

Economou, E. N.

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

Fan, S.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

Flemming, J. G.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Forssell, G.

H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

Gantzounis, G.

G. Gantzounis and N. Stefanou, "Theoretical analysis of three-dimensional polaritonic photonic crystals," Phys. Rev. B 72, 075107 (2005).

Gates, B.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Granitsyna, L. S.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Hiltner, P. A.

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

Högström, H.

H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

H. Högström and C. G. Ribbing, "A three-dimensional photonic crystal with a polaritonic gap," presented at the International Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005.

H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

Hu, A.

W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Huang, K. C.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

Joannopoulos, J. D.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

O. Toader and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E 70, 046605 (2004).

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

Klingshirn, C. F.

C. F. Klingshirn, Semiconductor Optics, 2nd ed. (Springer-Verlag, 2005).

Krieger, I. M.

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Kuzmiak, V.

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
[CrossRef]

Lei, X.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lu, Y.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

Maradudin, A. A.

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
[CrossRef]

McGurn, A. R.

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).

Ming, N.

W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Moussa, R.

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

Nashchekin, A. V.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Nelson, K. A.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, S. H.

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Povinelli, M. L.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
[CrossRef]

Remenyuk, A. D.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Ribbing, C. G.

H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991).
[CrossRef]

H. Högström and C. G. Ribbing, "A three-dimensional photonic crystal with a polaritonic gap," presented at the International Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005.

H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

Rung, A.

A. Rung, "Destruction of a polaritonic gap in a 2D photonic crystal," Opt. Commun. 252, 329-335 (2005).
[CrossRef]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals, Vol. 80 of Springer Series in Optical Sciences (Springer, 2001).

Salomon, L.

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Sievers, A. J.

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

Stefanou, N.

G. Gantzounis and N. Stefanou, "Theoretical analysis of three-dimensional polaritonic photonic crystals," Phys. Rev. B 72, 075107 (2005).

Takahasi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahasi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Theiss, M.

M. Theiss, Scout: Hard- and Software for Optical Spectroscopy, Aachen, 2002.

Toader, O.

O. Toader and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E 70, 046605 (2004).

Tolmachev, V. A.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Vlasova, E. N.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Volchek, B. Z.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Wäckelgård, E.

C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).

Xia, Y.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Xu, N.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yin, Y.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Adv. Mater. (1)

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004).
[CrossRef]

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

Infrared Phys. Technol. (1)

R. Moussa, L. Salomon, F. De-Fornel, J. P. Dufour, and H. Aourag, "Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI," Infrared Phys. Technol. 44, 27-34 (2003).
[CrossRef]

J. Phys. Chem. (1)

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

J. Phys: Condens. Matter (1)

W. Zhang, A. Hu, and N. Ming, "The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media," J. Phys: Condens. Matter 9, 541-549 (1997).
[CrossRef]

Langmuir (1)

Y. Lu, Y. Yin, B. Gates, and Y. Xia, "Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods," Langmuir 17, 6344-6350 (2001).
[CrossRef]

Nature (1)

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Opt. Commun. (1)

A. Rung, "Destruction of a polaritonic gap in a 2D photonic crystal," Opt. Commun. 252, 329-335 (2005).
[CrossRef]

Photonics Nanostruc. Fundam. Appl. (1)

H. Högström and C. G. Ribbing, "Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures," Photonics Nanostruc. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

Phys. Rev. B (5)

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of cubic polar crystal," Phys. Rev. B 55, 4298-4311 (1997).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the tranmission coefficient," Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

M. Notomi, K. Yamada, A. Shinya, J. Takahasi, C. Takahasi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Semiconductors (1)

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, "One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon," Semiconductors 36, 932-935 (2002).
[CrossRef]

Thin Solid Films (1)

C. G. Ribbing and E. Wäckelgård, "Reststrahlen bands as property indicators for materials in dielectric coatings," Thin Solid Films 206, 312-317 (1991).
[CrossRef]

Other (15)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton U. Press, 1995).

K. Sakoda, Optical Properties of Photonic Crystals, Vol. 80 of Springer Series in Optical Sciences (Springer, 2001).

J. Dowling, "Photonic and sonic bandgap bibliography," http://home.earthlink.net/∼jpdowling/pbgbib.html#R.

C. F. Klingshirn, Semiconductor Optics, 2nd ed. (Springer-Verlag, 2005).

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

M. Theiss, Scout: Hard- and Software for Optical Spectroscopy, Aachen, 2002.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).

O. Toader and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E 70, 046605 (2004).

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003).

G. Gantzounis and N. Stefanou, "Theoretical analysis of three-dimensional polaritonic photonic crystals," Phys. Rev. B 72, 075107 (2005).

H. Högström, G. Forssell, and C. G. Ribbing, "Realization of selective low emittance in both thermal atmospheric windows," Opt. Eng. 44, 026001 (2005).

H. Högström and C. G. Ribbing, "A three-dimensional photonic crystal with a polaritonic gap," presented at the International Symposium on Photonic and Electromagnetic Crystal Structures, Crete, Greece, 19-24 June 2005.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Duke Scientific, www.dukescientific.com.

Trafomo AB, Sweden, www.trafomo.se.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The real and imaginary parts of the dielectric function plotted together with the bulk reflectance spectrum for silicon dioxide calculated using optical data (Ref. 3).

Fig. 2
Fig. 2

Normal incidence IR reflectance spectra of four different sedimented silica opals. The diameters of the spheres are indicated in the inset. Four reflectance peaks originating from the periodicity of the opal are located between 1 and 4 μm . The polaritonic reflectance peak occurs for wavelengths around 9 μm , which is independent of the sphere sizes.

Fig. 3
Fig. 3

Experimental and calculated [Eq. (3)] results for the positions of the structural reflectance maximum.

Fig. 4
Fig. 4

Experimental reflectance spectra for the polaritonic peak of the silica colloids and the glass substrate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω 2 ( K ) = c 2 ε ( ω ) K 2 ,
ε ( ω ) = ε [ 1 + ω L 2 - ω T 2 ω T 2 - ω 2 - iωΓ ] ,
λ p 2 = 8 3 D 2 ( n i 2 α i - sin ψ ) ,

Metrics