Abstract

Surface contouring by phase-shifting digital holography is proposed and verified by experiments and numerical simulations. Digital holograms are recorded before and after mode hopping of a laser diode subject to current tuning, and the difference of the reconstructed phases at each wavelength is computed to deliver surface contours of a diffusely reflecting surface. Since normal incidence on the object is employed, the method does not need the removal of the tilt component and is free from the shadowing effect as advantages over the dual-incidence method proposed before by the first author.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
    [CrossRef]
  2. T. Dresel, G. Häusler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  3. M. Takeda and H. Yamamoto, "Fourier transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces," Appl. Opt. 33, 7829-7837 (1994).
    [CrossRef] [PubMed]
  4. I. Yamaguchi, A. Yamamoto, and S. Kuwamura, "Speckle decorrelation in surface profilometry by wavelength scanning interferometry," Appl. Opt. 37, 6721-6728 (1998).
    [CrossRef]
  5. B. P. Hildebrand and K. A. Haines, "Multiple-wavelength and multiple source holography applied to contour generations," J. Opt. Soc. Am. 57, 155-162 (1967).
    [CrossRef]
  6. M. Yonemura, "Wavelength-change characteristics of semiconductor lasers and their applications to holographic contouring," Opt. Lett. 10, 1-3 (1985).
    [CrossRef] [PubMed]
  7. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  8. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  9. I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001).
    [CrossRef]
  10. I. Yamaguchi, J. Kato, and H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography," Opt. Eng. 42, 1267-1271 (2003).
    [CrossRef]
  11. G. Pedrini, P. Frohning, H. J. Tiziani, and M. E, Gustav, "Pulsed digital holography for high-speed contouring that uses a two-wavelength method," Appl. Opt. 38, 3460-3466 (1999).
    [CrossRef]
  12. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
    [CrossRef]
  13. E. B. Champagne, "Nonparaaxial imaging, magnification, and aberration properties in holography," J. Opt. Soc. Am. 57, 51-55 (1967).
    [CrossRef]
  14. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004).
    [CrossRef] [PubMed]
  15. D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
    [CrossRef]
  16. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, "Image reconstruction only by phase data in phase-shifting digital holography," Appl. Opt. 45, 975-983 (2006).
    [CrossRef] [PubMed]
  17. D. Parshall and M. K. Kim, "Digital holographic microscopy with dual-wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006).
    [CrossRef] [PubMed]

2006 (3)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, "Image reconstruction only by phase data in phase-shifting digital holography," Appl. Opt. 45, 975-983 (2006).
[CrossRef] [PubMed]

D. Parshall and M. K. Kim, "Digital holographic microscopy with dual-wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

I. Yamaguchi, J. Kato, and H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography," Opt. Eng. 42, 1267-1271 (2003).
[CrossRef]

2001 (1)

I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001).
[CrossRef]

2000 (2)

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1994 (2)

1992 (1)

1985 (1)

1967 (2)

Alfieri, D.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Champagne, E. B.

Chen, F.

F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Coppola, G.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

De Nicola, S.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Dresel, T.

Ferraro, P.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Finizio, A.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Frohning, P.

Gustav, M. E

Haines, K. A.

Häusler, G.

Hildebrand, B. P.

Javidi, B.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Jüptner, W.

Kato, J.

I. Yamaguchi, J. Kato, and H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography," Opt. Eng. 42, 1267-1271 (2003).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001).
[CrossRef]

Kim, M. K.

Kuwamura, S.

Matsuzaki, H.

I. Yamaguchi, J. Kato, and H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography," Opt. Eng. 42, 1267-1271 (2003).
[CrossRef]

Mills, G. A.

Ohta, S.

I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001).
[CrossRef]

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Parshall, D.

Pedrini, G.

Pierattini, G.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Schnars, U.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Takeda, M.

Tiziani, H. J.

Venzke, H.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Yamaguchi, I.

Yamamoto, A.

Yamamoto, H.

Yamamoto, K.

Yaroslavsky, L. P.

Yokota, M.

Yonemura, M.

Zhang, F.

Zhang, T.

Appl. Opt. (7)

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Opt. Eng. (3)

F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000).
[CrossRef]

I. Yamaguchi, J. Kato, and H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography," Opt. Eng. 42, 1267-1271 (2003).
[CrossRef]

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic setup for phase-shifting digital holography.

Fig. 2
Fig. 2

Principles of surface contouring by dual-wavelength phase-shifting digital holography.

Fig. 3
Fig. 3

Experimental setup for surface contouring by dual-wavelength phase-shifting digital holography.

Fig. 4
Fig. 4

Variations of wavelength and output power of a LD caused by a change in the injection current.

Fig. 5
Fig. 5

Repeatability of the wavelength change caused by mode hops induced by the current change.

Fig. 6
Fig. 6

Experimental results from a metal plate with a slope angle of 5° from the reference plane. (a) Original phase difference and a cross section. (b) Unwrapped phase and a cross section.

Fig. 7
Fig. 7

Dependences of estimated tilt angles and standard deviations on given tilt angles of the metal plate.

Fig. 8
Fig. 8

Dependences of the number of pixels that could not be correctly phase unwrapped.

Fig. 9
Fig. 9

Results from a Ping-Pong ball 40   mm in diameter. (a) Phase difference, (b) display of the result.

Fig. 10
Fig. 10

(Color online) Simulation results for the reconstructed phases at dual wavelengths and their difference. The object is a plate tilted by 20° of arc. (a) Reconstructed phases, (b) phase difference.

Fig. 11
Fig. 11

(Color online) Comparisons between experiments and simulation for tilted planes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ; δ ) = | U R ( x , y ) exp ( i δ ) + U ( x , y ) | 2 = | U R | 2 + | U | 2 + U U R * exp ( i δ ) + U * U R exp ( i δ ) ,
U ( x , y ) = 1 i 4 U R * { I ( x , y : 0 ) I ( x , y : π 2 ) + i [ I ( x , y : π 2 ) I ( x , y : π ) ] } .
U I ( X , Y , Z ) = U ( x , y ) exp [ i k ( X x ) 2 + ( Y y ) 2 2 Z ] d x d y ,
Δϕ = arg [ U Ia ( x , y , z o ) U Ib * ( x , y , z o ) ] = ( k s a z k s b z k o a z k o b z ) h ( x , y ) ( k sax k sbx ) x ,
Δ Φ ( x , y ) = 2 ( k a k b ) h ( x , y ) = 4 π h ( x , y ) / Λ ,
Λ = 1 / ( 1 / λ a 1 / λ b ) .
Δ h = Λ / 2 = λ 2 / 2 Δ λ ,
I Ia ( x , y , z o ) I Ib ( x , y , z o ) = | U Ia ( x , y , z o ) U Ib * ( x , y , z o ) | 2

Metrics