Abstract

Fluorescence correlation spectroscopy (FCS) is a sensitive technique used to probe size, concentration, flow velocity, and reaction kinetics in a dilute solution. Conventional FCS spectrometers achieve this sensitivity at the cost of using bulky optics. We demonstrate a technique that utilizes a single-mode optical fiber of 3.3μm mode field diameter to perform FCS measurements. We demonstrate that the technique has adequate sensitivity to perform FCS measurements on fluorescent beads of 13  nm radius, and that the results agree with theoretical predictions. Our method potentially allows FCS to be extended to remote and in vivo applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
    [CrossRef]
  2. S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
    [CrossRef] [PubMed]
  3. P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
    [CrossRef] [PubMed]
  4. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 76, 3269-3283 (2004).
    [CrossRef] [PubMed]
  5. A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
    [CrossRef] [PubMed]
  6. B. Kuswandi, "Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions," Anal. Bioanal. Chem. 376, 1104-1110 (2003).
    [CrossRef] [PubMed]
  7. K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
    [CrossRef] [PubMed]
  8. P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
    [CrossRef] [PubMed]
  9. U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
    [CrossRef]
  10. J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003).
    [CrossRef] [PubMed]
  11. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
    [CrossRef]
  12. N. L. Thompson, Topics in Fluorescence Spectroscopy, Fluorescence Correlation Spectroscopy (Plenum, 1991), Vol. 1, pp. 337-378.
  13. J. Mertz, C. Xu, and W. W. Webb, "Single-molecule detection by two-photon-excited fluorescence," Opt. Lett. 20, 2532-2534 (1995).
    [CrossRef] [PubMed]
  14. P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
    [CrossRef] [PubMed]
  15. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
    [CrossRef]
  16. D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
    [PubMed]
  17. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
    [CrossRef] [PubMed]
  18. W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
    [CrossRef] [PubMed]
  19. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
    [CrossRef] [PubMed]
  20. R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
    [CrossRef] [PubMed]
  21. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
    [CrossRef] [PubMed]

2005 (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

2004 (3)

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 76, 3269-3283 (2004).
[CrossRef] [PubMed]

2003 (4)

B. Kuswandi, "Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions," Anal. Bioanal. Chem. 376, 1104-1110 (2003).
[CrossRef] [PubMed]

K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
[CrossRef] [PubMed]

J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003).
[CrossRef] [PubMed]

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

2002 (3)

P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
[CrossRef] [PubMed]

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

1999 (1)

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

1998 (3)

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

1997 (1)

S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
[CrossRef] [PubMed]

1995 (2)

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

J. Mertz, C. Xu, and W. W. Webb, "Single-molecule detection by two-photon-excited fluorescence," Opt. Lett. 20, 2532-2534 (1995).
[CrossRef] [PubMed]

1974 (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

1972 (1)

D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Alivisatos, A. P.

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

Balaji, J.

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003).
[CrossRef] [PubMed]

P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
[CrossRef] [PubMed]

Bawendi, M. G.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Bier, F. F.

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

Bohling, C.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Bruchez, M.

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

Bullock, R.

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

Chakrabarti, S.

Chan, W. C.

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Clapp, A. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

de Pauw, M.

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Denk, W.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

Di, X.

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

Eechaute, W.

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Elson, E.

D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Faber, E.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Fisher, B. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Gao, X.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Garai, K.

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003).
[CrossRef] [PubMed]

Gin, P.

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

Hashimoto, Y.

K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
[CrossRef] [PubMed]

Haupts, U.

S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
[CrossRef] [PubMed]

Helmchen, F.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

Heyndrickx, G. R.

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Hodeige, D.

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Kleinfeld, D.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

Knoll, W.

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

Kon, T.

K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
[CrossRef] [PubMed]

Koppel, D. E.

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

Kostjucenko, I.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Kuswandi, B.

B. Kuswandi, "Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions," Anal. Bioanal. Chem. 376, 1104-1110 (2003).
[CrossRef] [PubMed]

Lehmann, C.

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

Magde, D.

D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Maiti, S.

J. Balaji, K. Garai, S. Chakrabarti, and S. Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003).
[CrossRef] [PubMed]

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
[CrossRef] [PubMed]

S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
[CrossRef] [PubMed]

Marshall, F. F.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Matthes, E.

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Mauro, J. M.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Medintz, I. L.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Mertz, J.

Mitra, P. P.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

Mitsubayashi, K.

K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
[CrossRef] [PubMed]

Moronne, M.

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

Nie, S.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Niu, L.

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

Periasamy, N.

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

Petros, J. A.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Robelek, R.

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

Schade, W.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Scheel, D.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Schmid, E. L.

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

Schmidt, P. M.

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

Sengupta, P.

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
[CrossRef] [PubMed]

Simons, J. W.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Thompson, N. L.

N. L. Thompson, Topics in Fluorescence Spectroscopy, Fluorescence Correlation Spectroscopy (Plenum, 1991), Vol. 1, pp. 337-378.

Webb, W.

D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Webb, W. W.

S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
[CrossRef] [PubMed]

J. Mertz, C. Xu, and W. W. Webb, "Single-molecule detection by two-photon-excited fluorescence," Opt. Lett. 20, 2532-2534 (1995).
[CrossRef] [PubMed]

Weiss, S.

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

Weyne, J.

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Willer, U.

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 76, 3269-3283 (2004).
[CrossRef] [PubMed]

Xu, C.

Yang, L.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Young, H. F.

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

Zauner, A.

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

D. Hodeige, M. de Pauw, W. Eechaute, J. Weyne, and G. R. Heyndrickx, "On the validity of blood flow measurement using colored microspheres," Am. J. Physiol. 276, H1150-H1158 (1999).
[PubMed]

Anal. Bioanal. Chem. (1)

B. Kuswandi, "Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions," Anal. Bioanal. Chem. 376, 1104-1110 (2003).
[CrossRef] [PubMed]

Anal. Chem. (2)

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 76, 3269-3283 (2004).
[CrossRef] [PubMed]

R. Robelek, L. Niu, E. L. Schmid, and W. Knoll, "Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry," Anal. Chem. 76, 6160-6165 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

P. Sengupta, K. Garai, J. Balaji, N. Periasamy, and S. Maiti, "Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy," Biophys. J. 84, 1977-1984 (2003).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber," Biosens. Bioelectron. 19, 193-198 (2003).
[CrossRef] [PubMed]

P. M. Schmidt, C. Lehmann, E. Matthes, and F. F. Bier, "Detection of activity of telomerase in tumor cells using fiber optical biosensors," Biosens. Bioelectron. 17, 1081-1087 (2002).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," J. Am. Chem. Soc. 126, 301-310 (2004).
[CrossRef] [PubMed]

Methods (1)

P. Sengupta, J. Balaji, and S. Maiti, "Measuring diffusion in cell membranes by fluorescence correlation spectroscopy," Methods 27, 374-387 (2002).
[CrossRef] [PubMed]

Neurosurgery (1)

A. Zauner, R. Bullock, X. Di, and H. F. Young, "Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain," Neurosurgery 37, 1168-1177 (1995).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

Phys. Rev. Lett. (1)

D. Magde, E. Elson, and W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997).
[CrossRef] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741-15746 (1998).
[CrossRef]

Science (2)

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281, 2013-2016 (1998).
[CrossRef] [PubMed]

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Spectrochim. Acta (1)

U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in situ gas diagnostics," Spectrochim. Acta Part A 58, 2427-2432 (2002).
[CrossRef]

Other (1)

N. L. Thompson, Topics in Fluorescence Spectroscopy, Fluorescence Correlation Spectroscopy (Plenum, 1991), Vol. 1, pp. 337-378.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. L, laser; P, prism; M1 and M2 mirrors; L1, L2, and L3, lenses with focal lengths of 5, 20, and 15   cm , respectively; S1 and S2, 1   mm diameter apertures; DC, dichroic; FC, fiber coupler; SF, single-mode fiber; MF, multimode fiber; PC, personal computer; black arrowhead, direction of excitation; gray arrowhead, direction of emission.

Fig. 2
Fig. 2

FCS data from fluorescent beads. The autocorrelation data obtained from fluorescent beads of radius 13   nm (black square), 22   nm (circle), 55   nm (triangle), and the corresponding fits (solid curves). The abscissa represents the delay time in milliseconds and the ordinate represents the autocorrelation function, G(τ). The data from 22 and 55   nm beads are multiplied by 68 and 5.6, respectively.

Fig. 3
Fig. 3

Fiber autofluorescence. (a) Autofluorescence spectrum of the fiber: the spectrum of the background emission obtained from the fiber, when excited with a 543   nm laser. The abscissa represents the wavelength in nanometers and the ordinate represents normalized fluorescence. (b) FCS of the background: the autocorrelation trace obtained from pure water. The abscissa represents the delay time in milliseconds and the ordinate represents the autocorrelation function, G ( τ ) .

Tables (1)

Tables Icon

Table 1 Summary of the FCS Measurements

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = δ F ( t ) δ F ( t + τ ) F ( t ) 2 ,
G ( τ ) = ( 1 N ) 1 1 + τ / τ D ,
r 2 = 4 D τ D ,
D = k T 6 π η R h ,
r 2 = 4 k T 6 π η τ D R h .
r = 0.94 × 10 9 τ D R h   in   SI   units .
G ( 0 ) = N ( N + N ) 2 ,
V = ( D ( r ) d r 3 ) 2 D 2 ( r ) d r 3 ,

Metrics