Abstract

We present a study of the sidewall surface quality inside microchannels fabricated in fused silica glass by femtosecond laser pulses and chemical etching. Multiple combinations of laser exposure and etching solution parameters were examined. Results of scanning electron microscopy, atomic force microscopy, and optical reflection analyses of the surfaces are presented. The results obtained demonstrate the feasibility of optical quality surface fabrication, which in turn demonstrates the feasibility of fabricating complex integrated devices containing microfluidic channels and optical waveguides in the glass substrates.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  3. Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
    [CrossRef]
  4. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
    [CrossRef]
  5. Y. Sikorski, A. A. Said, M. Dugan, R. Maynard, P. Bado, C. Florea, and K. A. Winick, "Using femtosecond lasers to micromachine integrated optical devices," Proceedings of ICALEO Dearborn, Mich. (2000).
  6. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
    [CrossRef]
  7. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  8. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
    [CrossRef]
  9. A. Strelsov and N. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  10. P. Bado, A. Said, M. Dugan, T. Sosnowski, and S. Wright, "Dramatic improvements in waveguide manufacturing with femtosecond laser," NFOEC, Dallas (2002).
  11. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly-written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  12. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003).
    [CrossRef] [PubMed]
  13. K. A. Winick, C. Florea, A. A. Said, M. Dugan, and P. Bado, "Fabrication and characterization of photonic devices written in glass with femtosecond lasers," Conference on Lasers and Electrooptics (CLEO), San Francisco, 16-21 May 2004, invited paper CtuF6.
  14. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," presented at the Materials Research Society Fall Meeting, Boston 2004.
  15. Y. Bellouard, M. Dugan, A. Said, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
    [CrossRef] [PubMed]
  16. M. Spierings, "Review wet chemical etching of silicate glasses in hydrofluoric acid based solutions," J. Mater. Sci. 28, 6261-6273 (1993).
    [CrossRef]
  17. W. Maskill and D. Ferguson, "The acid polishing of lead crystal glass," J. Soc. Glass Technol. 34,115-121 (1950).
  18. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
    [CrossRef] [PubMed]

2005

2004

Y. Bellouard, M. Dugan, A. Said, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
[CrossRef] [PubMed]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

2003

2002

2001

2000

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

1999

1998

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

1997

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

1996

1993

M. Spierings, "Review wet chemical etching of silicate glasses in hydrofluoric acid based solutions," J. Mater. Sci. 28, 6261-6273 (1993).
[CrossRef]

Bado, P.

Y. Bellouard, M. Dugan, A. Said, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
[CrossRef] [PubMed]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Bellouard, Y.

Bhardwaj, V. R.

Borrelli, N.

Corkum, P. B.

Davis, K. M.

Dugan, M.

Florea, C.

C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly-written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Hirao, K.

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

Inouye, H.

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Kazansky, P. G.

Kondo, Y.

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

Marcinkevicius, A.

Matsuo, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Mehandale, M.

Misawa, H.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Mitsuyu, T.

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Miura, K.

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Miwa, M.

Mizeikis, V.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

Nishii, J.

Nouchi, K.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Rayner, D. M.

Said, A.

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Simova, E.

Spierings, M.

M. Spierings, "Review wet chemical etching of silicate glasses in hydrofluoric acid based solutions," J. Mater. Sci. 28, 6261-6273 (1993).
[CrossRef]

Strelsov, A.

Sugimoto, N.

Suzuki, T.

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

Taylor, R. S.

Watanabe, M.

Winick, K. A.

C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly-written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

Appl. Phys. A

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Electron. Lett.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci.

M. Spierings, "Review wet chemical etching of silicate glasses in hydrofluoric acid based solutions," J. Mater. Sci. 28, 6261-6273 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, "Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength," Jpn. J. Appl. Phys. Part 2 37, L94-L96 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. Bado, A. Said, M. Dugan, T. Sosnowski, and S. Wright, "Dramatic improvements in waveguide manufacturing with femtosecond laser," NFOEC, Dallas (2002).

Y. Sikorski, A. A. Said, M. Dugan, R. Maynard, P. Bado, C. Florea, and K. A. Winick, "Using femtosecond lasers to micromachine integrated optical devices," Proceedings of ICALEO Dearborn, Mich. (2000).

W. Maskill and D. Ferguson, "The acid polishing of lead crystal glass," J. Soc. Glass Technol. 34,115-121 (1950).

K. A. Winick, C. Florea, A. A. Said, M. Dugan, and P. Bado, "Fabrication and characterization of photonic devices written in glass with femtosecond lasers," Conference on Lasers and Electrooptics (CLEO), San Francisco, 16-21 May 2004, invited paper CtuF6.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," presented at the Materials Research Society Fall Meeting, Boston 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM images: (A) 631× magnification image of the sample etched with the etching vessels placed inside an ultrasonic bath; (B) 2190× image of the “deep channel” sidewall surface; (C) 2492× image of the sidewall of 100 μm deep channel; (D) 10325× image of the sidewall of 20 μm deep channel; (E) 462× image of the deep channel sidewall surface that shows a rough area in the middle of the surface; (F) 713× image of the lower half of the deep channel sidewall surface that shows the surface with an rms roughness between 40 and 50 nm; (G) 4585× image of the lower half of the deep channel sidewall surface that shows the surface with a rms roughness between 40 and 50 nm; (H) 14239× image of the upper half of the deep channel sidewall surface that shows the surface with a rms roughness between 20 and 30 nm.

Fig. 2
Fig. 2

AFM images: (A) 2D image of the upper half of the deep channel sidewall surface that shows the surface with a rms roughness between 20 and 30 nm; (B) 3D image of the upper half of the deep channel sidewall surface that shows the surface with a rms roughness between 20 and 30 nm; (C) 3D image of the middle of the deep channel sidewall surface that shows the surface with a rms roughness between 20 and 30 nm.

Fig. 3
Fig. 3

Schematic of the direct optical reflection analysis setup.

Fig. 4
Fig. 4

Optical reflection images: (A) reflection off a polished (20-10 scratch-dig) glass surface; (B) reflection off frosted glass; (C) reflection off the deep channel sidewall surface.

Metrics