Abstract

Combustion control requires visible photodetectors to sense the CH*CL emission at 430nm that combined with a visible–blind UV photodetector allows us to obtain the OH*CH* ratio. UV–visible P-InGaN∕GaN multiple quantum well-N photodiodes with 1518mm2 areas were fabricated to conduct OH*(308nm) and CH*CL detection without external filters. Bandpass detectors at 230390nm and 360450nm presented linear responses over five decades and rejection ratios >103 at 430 and 308nm, respectively. A full optical sensor system was built and detectors operated at 120°C in a combustion chamber, showing linear responses within the dynamic range, maximum signal-to-noise ratios of 103 and response times of <1s. An exponential association dependence between the optical OH*CH*CL signals and the gas∕air ratios was found.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Pichery, "Les détecteurs de gaz domestiques par méthode optique," GAZ d'aujourd'hui 6, 271-274 (1996).
  2. Y. Hardalupas and M. Orain, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame," Combust. Flame 139, 188-207 (2004).
    [CrossRef]
  3. J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
    [CrossRef]
  4. J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
    [CrossRef]
  5. J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
    [CrossRef]
  6. S.-J. Chang, "Improving InGaN MSM photodetectors by using a recessed-electrode structure," J. Sci. Eng. Tech. 1, 1-4 (2005).
  7. Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
    [CrossRef]
  8. C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
    [CrossRef]
  9. J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.
  10. J. Anduaga, "Development of GaN-based photodetectors for combustion monitoring," Annual Report FIT-020400-2004-58 (Spanish Ministerio de Educación y Ciencia and Orkli, Arrasate-Mondragón, 2005).
  11. F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
    [CrossRef]
  12. Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
    [CrossRef]

2006

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

2005

S.-J. Chang, "Improving InGaN MSM photodetectors by using a recessed-electrode structure," J. Sci. Eng. Tech. 1, 1-4 (2005).

2004

Y. Hardalupas and M. Orain, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame," Combust. Flame 139, 188-207 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

2003

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

2002

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

2000

J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
[CrossRef]

1999

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

1996

M. T. Pichery, "Les détecteurs de gaz domestiques par méthode optique," GAZ d'aujourd'hui 6, 271-274 (1996).

Akamatsu, F.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Aldén, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Ambacher, O.

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

Anduaga, J.

J. Anduaga, "Development of GaN-based photodetectors for combustion monitoring," Annual Report FIT-020400-2004-58 (Spanish Ministerio de Educación y Ciencia and Orkli, Arrasate-Mondragón, 2005).

Aumer, M. E.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Bedair, S. M.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Chang, C.-S.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Chang, S.-J.

S.-J. Chang, "Improving InGaN MSM photodetectors by using a recessed-electrode structure," J. Sci. Eng. Tech. 1, 1-4 (2005).

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Chiou, Y.-Z.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Gong, J.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Hardalupas, Y.

Y. Hardalupas and M. Orain, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame," Combust. Flame 139, 188-207 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Hermann, F.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Hult, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Ikeda, Y.

J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Kawahara, N.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Klingmann, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Kojima, J.

J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
[CrossRef]

Leboeuf, S. F.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Lin, Y.-C.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Liu, S.-H.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Mizutani, Y.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Müller, G.

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

Muñoz, E.

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Muth, J. F.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Nakajima, T.

J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Navarro, A.

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Olofsson, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Orain, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Y. Hardalupas and M. Orain, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame," Combust. Flame 139, 188-207 (2004).
[CrossRef]

Panoutsos, C. S.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Parker, C. A.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Pau, J. L.

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Pecharromán, R.

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Pereiro, J.

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Pichery, M. T.

M. T. Pichery, "Les détecteurs de gaz domestiques par méthode optique," GAZ d'aujourd'hui 6, 271-274 (1996).

Reed, M. J.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Richter, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Rivera, C.

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

Roberts, J. C.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

Schalwig, J.

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

Seyfried, H.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Stutzmann, M.

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

Su, Y.-K.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

Taylor, A. M. K. P.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Tsushima, S.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Wakabayashi, T.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Appl. Therm. Eng.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Combust. Flame

Y. Hardalupas and M. Orain, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame," Combust. Flame 139, 188-207 (2004).
[CrossRef]

GAZ d'aujourd'hui

M. T. Pichery, "Les détecteurs de gaz domestiques par méthode optique," GAZ d'aujourd'hui 6, 271-274 (1996).

IEEE J. Quantum Electron.

Y.-Z. Chiou, Y.-K. Su, S.-J. Chang, J. Gong, Y.-C. Lin, S.-H. Liu, and C.-S. Chang, "High Detectivity InGaN-GaN Multiquantum Well p-n junction photodiodes," IEEE J. Quantum Electron. 39, 681-684 (2003).
[CrossRef]

C. Rivera, J. L. Pau, A. Navarro, and E. Muñoz, "Photoresponse of (In, Ga)N/GaN multiple-quantum-well structures in the visible and UVA ranges," IEEE J. Quantum Electron. 42, 51-58 (2006).
[CrossRef]

J. Electron. Mater.

J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M. E. Aumer, S. M. Bedair, and M. J. Reed, "Ultraviolet-visible metal semiconductor-metal photodetectors fabricated from InxGa1−xN (0 greater than/equal to x greater than/equal to 0.13)," J. Electron. Mater. 31, L1-L6 (2002).
[CrossRef]

J. Sci. Eng. Tech.

S.-J. Chang, "Improving InGaN MSM photodetectors by using a recessed-electrode structure," J. Sci. Eng. Tech. 1, 1-4 (2005).

Mater. Sci. Eng. B

J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, "Group III-nitride-based sensors for combustion monitoring," Mater. Sci. Eng. B 93, 207-214 (2002).
[CrossRef]

Meas. Sci. Technol.

F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, "The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields," Meas. Sci. Technol. 10, 1240-1246 (1999).
[CrossRef]

Proc. Combust. Inst.

J. Kojima, Y. Ikeda, and T. Nakajima, "Spatially resolved measurement of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames," Proc. Combust. Inst. 28, 1757-1764 (2000).
[CrossRef]

Other

J. L. Pau, C. Rivera, J. Pereiro, A. Navarro, R. Pecharromán, and E. Muñoz, "III-nitride-based photodetectors for the visible range," presented at the 29th Workshop on Compound Semiconductor Devices and Integrated Circuits, Cardiff, U.K., 16-18 May 2005.

J. Anduaga, "Development of GaN-based photodetectors for combustion monitoring," Annual Report FIT-020400-2004-58 (Spanish Ministerio de Educación y Ciencia and Orkli, Arrasate-Mondragón, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the UV–visible P-MQW-N photodiodes fabricated to perform combustion monitoring experiments. (b) Spectral response of diodes with well In contents of 4%, 9%, 19%, 22%, and 26 % . Maximum responsivity at unity external quantum efficiency is displayed as reference. The dotted line depicts the boundary between the absorption ranges of the p-GaN layer and the MQW structure.

Fig. 2
Fig. 2

Photoelectrical response of diodes with well In contents of 20%, 26%, and 30 % as a function of the optical power for excitation wavelengths of 325, 415, and 488 nm . Dashed lines represent linear fittings to experimental data.

Fig. 3
Fig. 3

Spectral response of detectors A (front-side illuminated) and B (back-side illuminated), designed to monitor OH * and CH *    CL , respectively. Typical flame spectrum of an industrial premixed combustor is diplayed as reference.

Fig. 4
Fig. 4

Spectral response of back-illuminated P-MQW-N photodiodes with In contents of 6% and 9 % . The bandgap edge of GaN acts as the lower cutoff wavelength of the window response.

Fig. 5
Fig. 5

Polar response chart of sensor A1 (solid line). Dotted curve is the result of the cosine law fitting.

Fig. 6
Fig. 6

Time response of sensor A1 to an off–on–off flame event.

Fig. 7
Fig. 7

Sketch of the experimental setup used to perform sensor calibration.

Fig. 8
Fig. 8

(a) OH * CH * ratio, calculated from Eq. 1 as a function of the excess air number. Solid line represents the fitting by Eq. 3. (b) Y axis, estimated CO 2 concentration for variable combustion conditions after training phase of the sensor system. X axis, experimental data obtained from reference gas detectors.

Equations (139)

Equations on this page are rendered with MathJax. Learn more.

CH * CL
430 nm
OH * CH *
15 18 mm 2
OH * ( 308 nm )
CH * CL
230 390 nm
360 450 nm
> 10 3
308 nm
120 °C
10 3
< 1 s
OH * CH * CL
> 1 s
( 100 200 V )
( OH * , CH * )
430 nm
OH * CL
308 nm
CH * CL
OH * CH * CL
1.5 μm
200 nm
( Al ) GaN
OH * UV
360 nm
CH * CL
10 12 cm Hz 1 2 W - 1
CH *
OH * CL
10 3
OH * CH * CL
4 %
26 %
15 nm
> 3 × 10 17 cm - 3
> 10 18 cm - 3
Al x Ga 1 - x N ( x = 0.15 )
20 50 nm
Ni ( 50   Å ) Au ( 50   Å )
Ni ( 550   Å ) Au ( 2000   Å )
Ti ( 500   Å ) Al ( 2000   Å )
500 °C
10 min
200 °C
5 min
0.07
9 mm 2
364 nm
100 mA W
360 nm
364 nm
10 20 mA W
364 nm
λ < 364 nm
> 10 3
< 1 mm 2
0.3 % / °C
0.5 % / °C
300 K
> 200 °C
10 9
10 12 Ω
> 1 × 10 13 cm   
Hz 1 2 W - 1
> 1 × 10 12 cm   
Hz 1 2 W - 1
364 nm
488 nm ( Ar + ) ,
415 nm
( GaN - based LD ) ,
325 nm
( He–Cd )
1 100 ns
120 pF
8 %
26 %
( 0.07 mm 2
15 pF
( 9 mm 2
P - 7 x ( InGaN GaN )
OH *
CH * CL
9 %
19 %
450 nm
15.1 mm 2
17.3 mm 2
( 325 nm )
488 nm
20 mA W
308 nm
< 10 - 2 mA W
430 nm
OH *
CH * CL
R < 10 - 2 mA W
R = 6.0 mA W
450 nm
CH * CL
OH * CL
420 nm
OH * CH *
( S A 1 meas )
( S A 1 corr )
S A 1 corr = 0.37 * S A 1 meas
OH * CH *
OH * CH * = S A 1 corr S B 1 meas G B 1 G A 1 ,
S B 1 meas
G A 1
G B 1
CO 2
( < 0.5 mW )
10 6
10 8
1 1000 Hz
12 mV
< 1 s
( > 40
120 °C
EA = ( air∕fuel ) actual ( air∕fuel ) stoichiometric
OH * CH *
OH CH
OH * CH *
[ OH ] [ CH ] = 7.79 + 4.5 { 1 - exp [ ( EA - 1.6 )∕ 0.40 ] } .
CO 2
O 2
NO x
OH *
CH * CL
26 %
30 %
488 nm
OH *
CH *    CL
9 %
OH * CH *
CO 2

Metrics