Abstract

We present a feature-specific imaging system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all the reflected light onto a single photodetector. Principal component features are used to define the illumination patterns. The optimal linear minimum mean-square error (LMMSE) operator is used to generate object estimates from the measured features. We study the optimal allocation of illumination energy into each feature measurement in the presence of additive white Gaussian detector noise and optical blur. We demonstrate that this new imaging approach reduces imager complexity and provides improved image quality in high noise environments. Compared to the optimal LMMSE postprocessing of a conventional image, feature-specific structured imaging provides a 38% rms error reduction and requires 400 times fewer measurements for a noise standard deviation of σ=2×10-3. Experimental results validate these theoretical predictions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Cathey and E. R. Dowsky, "New paradigm for imaging systems," Appl. Opt. 41, 6080-6092 (2002).
    [CrossRef] [PubMed]
  2. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).
  3. P. Potuluri, M. R. Fetterman, and D. J. Brady, "High depth of field microscopic imaging using an interferometric camera," Opt. Express 8, 624-630 (2001).
    [CrossRef] [PubMed]
  4. D. J. Brady, "Multiplex sensors and the constant radiance theorem," Opt. Lett. 27, 16-18 (2002).
    [CrossRef]
  5. E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
    [CrossRef]
  6. M. A. Neifeld and P. Shankar, "Feature-specific imaging," Appl. Opt. 42, 3379-3389 (2003).
    [CrossRef] [PubMed]
  7. H. S. Pal and M. A. Neifeld, "Multispectral principal component imaging," Opt. Express 11, 2118-2125 (2003).
    [CrossRef] [PubMed]
  8. M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).
  9. N. P. Pitsianis, D. J. Brady, and X. Sun, "The quantized cosine transform for sensor-layer image compression," presented at the Computational Optical Sensing and Imaging OSA Topical Meeting, Charlotte, North Carolina (Optical Society of America, 2005).
  10. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).
  11. Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
    [CrossRef]
  12. P. Wheel, M. Dobbs, and W. E. Sharp, "Optimization of space borne imaging LADAR sensor for asteroid studies from parameter design," in Electro-Optical System Design, Simulation, Testing, and Training, R. M. Wasserman and S. L. DeVore, eds., Proc. SPIE 4772, 68-77 (2002).
  13. S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
    [CrossRef]
  14. S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
    [CrossRef]
  15. J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
    [CrossRef]
  16. E. Hom and N. Kiryati, "Toward optimal structured light patterns," Image Vis. Comput. 17, 87-97 (1999).
    [CrossRef]
  17. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
    [CrossRef] [PubMed]
  18. J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.
  19. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall Signal Processing Series (Prentice-Hall, 1977).
  20. M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Process. Mag. 14, 24-41 (1997).
    [CrossRef]
  21. H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (Wiley, 2004).
  22. R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J. 6, 163-168 (1963).
  23. D. B. Graham and N. M. Allinson, "Characterizing virtual eigensignatures for general purpose face recognition," In Face Recognition: from Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie, and T. S. Huang, eds., NATO ASI Series F, Comput. Syst. Sci. 163, 446-456 (1998), www.shef.ac.uk/eee/research/esg/face.html.
  24. P. K. Baheti and M. A. Neifeld, "Imaging with PCA-based active illumination," presented at the Frontiers in Optics/Laser Science Annual OSA Meeting, Tucson, Arizona (Optical Society of America, 2005).
  25. D. Psaltis, "Coherent optical information systems," Science 298, 1359-1363 (2002).
    [CrossRef] [PubMed]

2003 (2)

2002 (3)

2001 (2)

P. Potuluri, M. R. Fetterman, and D. J. Brady, "High depth of field microscopic imaging using an interferometric camera," Opt. Express 8, 624-630 (2001).
[CrossRef] [PubMed]

Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
[CrossRef]

2000 (3)

S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
[CrossRef]

S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
[CrossRef]

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

1999 (1)

E. Hom and N. Kiryati, "Toward optimal structured light patterns," Image Vis. Comput. 17, 87-97 (1999).
[CrossRef]

1998 (1)

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

1997 (2)

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Process. Mag. 14, 24-41 (1997).
[CrossRef]

1963 (1)

R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J. 6, 163-168 (1963).

Allinson, N. M.

D. B. Graham and N. M. Allinson, "Characterizing virtual eigensignatures for general purpose face recognition," In Face Recognition: from Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie, and T. S. Huang, eds., NATO ASI Series F, Comput. Syst. Sci. 163, 446-456 (1998), www.shef.ac.uk/eee/research/esg/face.html.

Andrews, H. C.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall Signal Processing Series (Prentice-Hall, 1977).

Baheti, P. K.

P. K. Baheti and M. A. Neifeld, "Imaging with PCA-based active illumination," presented at the Frontiers in Optics/Laser Science Annual OSA Meeting, Tucson, Arizona (Optical Society of America, 2005).

Banham, M. R.

M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Process. Mag. 14, 24-41 (1997).
[CrossRef]

Baraniuk, R. G.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

Baron, D.

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

Barrett, H. H.

H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (Wiley, 2004).

Batlle, J.

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

Brady, D. J.

D. J. Brady, "Multiplex sensors and the constant radiance theorem," Opt. Lett. 27, 16-18 (2002).
[CrossRef]

P. Potuluri, M. R. Fetterman, and D. J. Brady, "High depth of field microscopic imaging using an interferometric camera," Opt. Express 8, 624-630 (2001).
[CrossRef] [PubMed]

N. P. Pitsianis, D. J. Brady, and X. Sun, "The quantized cosine transform for sensor-layer image compression," presented at the Computational Optical Sensing and Imaging OSA Topical Meeting, Charlotte, North Carolina (Optical Society of America, 2005).

Cathey, W. T.

Der, S.

Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
[CrossRef]

Dobbs, M.

P. Wheel, M. Dobbs, and W. E. Sharp, "Optimization of space borne imaging LADAR sensor for asteroid studies from parameter design," in Electro-Optical System Design, Simulation, Testing, and Training, R. M. Wasserman and S. L. DeVore, eds., Proc. SPIE 4772, 68-77 (2002).

Dowsky, E. R.

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

Fetterman, M. R.

Fletcher, R.

R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J. 6, 163-168 (1963).

Freeman, D. M.

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

Funatsu, E.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

Graham, D. B.

D. B. Graham and N. M. Allinson, "Characterizing virtual eigensignatures for general purpose face recognition," In Face Recognition: from Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie, and T. S. Huang, eds., NATO ASI Series F, Comput. Syst. Sci. 163, 446-456 (1998), www.shef.ac.uk/eee/research/esg/face.html.

Gustafsson, M. G. L.

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

Hom, E.

E. Hom and N. Kiryati, "Toward optimal structured light patterns," Image Vis. Comput. 17, 87-97 (1999).
[CrossRef]

Hong, S.

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

Horn, B. K. P.

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

Hunt, B. R.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall Signal Processing Series (Prentice-Hall, 1977).

Katsaggelos, A. K.

M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Process. Mag. 14, 24-41 (1997).
[CrossRef]

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

King, B.

S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
[CrossRef]

Kiryati, N.

E. Hom and N. Kiryati, "Toward optimal structured light patterns," Image Vis. Comput. 17, 87-97 (1999).
[CrossRef]

Kyuma, K.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

Lai, S.

S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
[CrossRef]

S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
[CrossRef]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

Mahmoud, H. I.

Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
[CrossRef]

Mermelstein, M. S.

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

Miyake, Y.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

Mouaddib, E.

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

Myers, K. J.

H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (Wiley, 2004).

Neifeld, M. A.

M. A. Neifeld and P. Shankar, "Feature-specific imaging," Appl. Opt. 42, 3379-3389 (2003).
[CrossRef] [PubMed]

H. S. Pal and M. A. Neifeld, "Multispectral principal component imaging," Opt. Express 11, 2118-2125 (2003).
[CrossRef] [PubMed]

S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
[CrossRef]

S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
[CrossRef]

P. K. Baheti and M. A. Neifeld, "Imaging with PCA-based active illumination," presented at the Frontiers in Optics/Laser Science Annual OSA Meeting, Tucson, Arizona (Optical Society of America, 2005).

Nitta, Y.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

Ohta, J.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

Pal, H. S.

Pauca, V. P.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

Pitsianis, N. P.

N. P. Pitsianis, D. J. Brady, and X. Sun, "The quantized cosine transform for sensor-layer image compression," presented at the Computational Optical Sensing and Imaging OSA Topical Meeting, Charlotte, North Carolina (Optical Society of America, 2005).

Plemmons, R. J.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

Potuluri, P.

Powell, M. J. D.

R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J. 6, 163-168 (1963).

Prasad, S.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

Psaltis, D.

D. Psaltis, "Coherent optical information systems," Science 298, 1359-1363 (2002).
[CrossRef] [PubMed]

Ryu, J.

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

Salvi, J.

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

Sarvotham, S.

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

Shankar, P.

Sharp, W. E.

P. Wheel, M. Dobbs, and W. E. Sharp, "Optimization of space borne imaging LADAR sensor for asteroid studies from parameter design," in Electro-Optical System Design, Simulation, Testing, and Training, R. M. Wasserman and S. L. DeVore, eds., Proc. SPIE 4772, 68-77 (2002).

Sun, X.

N. P. Pitsianis, D. J. Brady, and X. Sun, "The quantized cosine transform for sensor-layer image compression," presented at the Computational Optical Sensing and Imaging OSA Topical Meeting, Charlotte, North Carolina (Optical Society of America, 2005).

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

Torgersen, T. C.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

Toyoda, T.

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

van der Gracht, J.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

Wheel, P.

P. Wheel, M. Dobbs, and W. E. Sharp, "Optimization of space borne imaging LADAR sensor for asteroid studies from parameter design," in Electro-Optical System Design, Simulation, Testing, and Training, R. M. Wasserman and S. L. DeVore, eds., Proc. SPIE 4772, 68-77 (2002).

Zheng, Q.

Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
[CrossRef]

Appl. Opt. (2)

Comput. J. (1)

R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J. 6, 163-168 (1963).

IEEE Signal Process. Mag. (1)

M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Process. Mag. 14, 24-41 (1997).
[CrossRef]

IEEE Trans. Electron Devices (1)

E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An artificial retina chip with current-mode focal plane image processing functions," IEEE Trans. Electron Devices 44, 1777-1782 (1997).
[CrossRef]

IEEE Trans. Image Process. (1)

Q. Zheng, S. Der, and H. I. Mahmoud, "Model-based target recognition in pulsed ladar imagery," IEEE Trans. Image Process. 10, 565-572 (2001).
[CrossRef]

Image Vis. Comput. (1)

E. Hom and N. Kiryati, "Toward optimal structured light patterns," Image Vis. Comput. 17, 87-97 (1999).
[CrossRef]

J. Microsc. (1)

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. Lai, B. King, and M. A. Neifeld, "Wavefront reconstruction by means of phase-shifting digital in-line holography," Opt. Commun. 173, 155-160 (2000).
[CrossRef]

S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Pattern Recogn. (1)

J. Batlle, E. Mouaddib, and J. Salvi, "Recent progress in coded structured light as a technique to solve the correspondence problem: a survey," Pattern Recogn. 31, 963-982 (1998).
[CrossRef]

Science (1)

D. Psaltis, "Coherent optical information systems," Science 298, 1359-1363 (2002).
[CrossRef] [PubMed]

Other (10)

H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (Wiley, 2004).

D. B. Graham and N. M. Allinson, "Characterizing virtual eigensignatures for general purpose face recognition," In Face Recognition: from Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie, and T. S. Huang, eds., NATO ASI Series F, Comput. Syst. Sci. 163, 446-456 (1998), www.shef.ac.uk/eee/research/esg/face.html.

P. K. Baheti and M. A. Neifeld, "Imaging with PCA-based active illumination," presented at the Frontiers in Optics/Laser Science Annual OSA Meeting, Tucson, Arizona (Optical Society of America, 2005).

P. Wheel, M. Dobbs, and W. E. Sharp, "Optimization of space borne imaging LADAR sensor for asteroid studies from parameter design," in Electro-Optical System Design, Simulation, Testing, and Training, R. M. Wasserman and S. L. DeVore, eds., Proc. SPIE 4772, 68-77 (2002).

J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, "Application of structured illumination in nano-scale vision," presented at the IEEE Workshop on Computer Vision for the Nano-Scale, Madison, Wisconsin (IEEE, 2003), pp. 16-22.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall Signal Processing Series (Prentice-Hall, 1977).

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, "Engineering the pupil phase to improve image quality," in Visual Information Processing XII, Z. Rahman, R. Schowengerdt, and S. Reichenbach, eds., Proc. SPIE 5108, 1-12 (2003).

M. B. Wakin, S. Sarvotham, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Recovery of jointly sparse signals from few random projections," in Proceedings Workshop on Neural Information Processing Systems (NIPS) (2005).

N. P. Pitsianis, D. J. Brady, and X. Sun, "The quantized cosine transform for sensor-layer image compression," presented at the Computational Optical Sensing and Imaging OSA Topical Meeting, Charlotte, North Carolina (Optical Society of America, 2005).

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds., Proc. SPIE 6065, 606509 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

System flow diagram for the FSSI approach.

Fig. 2
Fig. 2

(a) Five objects ( 64 × 64 ) from the training set (4000 objects) used to find the PC features. (b) First five PC features computed using the training set described above. (c) Reconstruction of the object estimate for different values of M.

Fig. 3
Fig. 3

Effect of increasing blur of the incoherent optical channel (i.e., increasing W from 2 to 4).

Fig. 4
Fig. 4

(a) RMSE versus number of features for moderate noise ( σ = 2 × 10 - 4 ) . (b) RMSE versus number of features for high noise ( σ = 2 × 10 - 3 ) . (c) (Top), example object; (Bottom left), measurement for CONV1 with M = 1 ; (Bottom middle), object estimate from CONV2 with M = 1 ; (Bottom right), object estimate from FSSI with M = 33 (all three for moderate noise σ = 2 × 10 - 4 ).

Fig. 5
Fig. 5

(a) Optimal energy distribution for moderate noise ( σ = 2 × 10 - 4 ) ; M = 40 and 60. (b) Optimal energy distribution for high noise ( σ = 2 × 10 - 3 ) ; M = 15 and 40.

Fig. 6
Fig. 6

(a) Optimal number of features required by FSSI to achieve the minimum reconstruction RMSE. (b) Comparison of CONV1, CONV2, and FSSI (uniform and nonuniform e i ) in terms of minimum reconstruction RMSE.

Fig. 7
Fig. 7

(a) Comparison of conventional imaging and nonuniform FSSI for moderate noise ( σ = 2 × 10 - 4 ) and different blurs W = 2 , 3, and 4. (b) Comparison of conventional imaging and nonuniform FSSI for high noise ( σ = 2 × 10 - 3 ) and different blurs W = 2 , 3, and 4.

Fig. 8
Fig. 8

Test images used to quantify the robustness of FSSI.

Fig. 9
Fig. 9

(a) Comparisons between theory and experiment for conventional imaging and FSSI. (b) (Top), example object; (Middle left), reconstruction for CONV2 from theory; (Middle right), reconstruction for CONV2 from experiment; (Bottom left), reconstruction for uniform FSSI from theory; (Bottom right), reconstruction for nonuniform FSSI from experiment. [Noise standard deviation ( σ = 4.5 × 10 - 4 ) .]

Tables (1)

Tables Icon

Table 1 RMSE comparison of the Nonuniform FSSI with CONV2 for Similar (to Training Set) Objects and Face Objects in Fig. 8

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = i = 1 N 2 [ H diag ( P ) G ] i + n ,
MSE = E { Tr [ ( G - G ^ ) ( G - G ^ ) T ] } ,
W ^ = R G H ˜ T [ H ˜ R G H ˜ T + R n ] - 1 ,
G ^ = i = 1 M α i P i
h ( i , j ) = Δ / 2 Δ / 2 Δ / 2 Δ / 2 sinc 2 [ ( x i Δ ) / W ] × sinc 2 [ ( y j Δ ) / W ] d x d y ,
R i = j = 1 N 2 [ H diag ( e i P i ) G ] j + n ,

Metrics