Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Viewing angle enhancement for two- and three-dimensional holographic displays with random superresolution phase masks

Not Accessible

Your library or personal account may give you access

Abstract

Holographic displays employing binary phase modulation have been demonstrated to be attractive on the grounds of efficiency and miniaturization, and they offer a plausible approach to two-dimensional (2D) and three-dimensional (3D) image projection and display. A novel algorithm—one-step phase retrieval—and corresponding hardware architecture have recently been proposed, providing the performance required for real-time holographic display. However, since viewing angle varies inversely with pixel size, very small display pixels are required to achieve a wide field of view. This is particularly problematic for 3D displays, as the requirement for a large display with small pixels has hitherto necessitated an unachievably large electrical bandwidth. We present a novel approach, utilizing fixed random pixelated quaternary phase masks of greater resolution than the displayed hologram, to dramatically increase the viewing angle for 2D and 3D holographic displays without incurring a bandwidth penalty or significantly degrading image quality. Furthermore, an algorithm is presented to generate holograms accounting for the presence of such a phase mask, so that only one mask is required.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual-view holographic three-dimensional display using a single spatial light modulator and a directional light-guide plate composed of pixelated gratings

Yanfeng Su, Zhijian Cai, Lingyan Shi, Feng Zhou, and Jianhong Wu
Appl. Opt. 58(25) 6912-6919 (2019)

Numerical analysis on a viewing angle enhancement of a digital hologram by attaching a pixelated random phase mask

Woo-Young Choi, Chang-Joo Lee, Bum-Su Kim, Kwan-Jung Oh, Keehoon Hong, Hyon-Gon Choo, Jisun Park, and Seung-Yeol Lee
Appl. Opt. 60(4) A54-A61 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved