Abstract

We have demonstrated a guided-mode resonance filter (GMRF) whose properties are tunable with laser illumination through the incorporation of a nonlinear dye. Laser illumination causes a change in the refractive index of the dye-doped portion of the structure, leading to controlled tuning of the GMRF reflectance spectrum. Changes in the refractive index of dye-doped regions are proportional to the intensity of the incident laser beam and are as high as Δn=0.09. The reflectance tuning effect occurs on a time scale of many seconds and is completely reversible upon termination of the laser illumination.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
    [CrossRef]
  2. Y. J. Wang and G. O. Carlisle, "Optical properties of disperse-red-1-doped nematic liquid crystal," J. Mater. Sci.: Mater. Electron. 13, 173-178 (2002).
    [CrossRef]
  3. Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
    [CrossRef]
  4. M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
    [CrossRef]
  5. H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
    [CrossRef]
  6. S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
    [CrossRef]
  7. Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
    [CrossRef]
  8. T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
    [CrossRef]
  9. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
    [CrossRef]
  10. Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
    [CrossRef]
  11. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage," Appl. Opt. 42, 5918-5927 (2003).
    [CrossRef] [PubMed]
  12. Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, eds. (Academic, 2002), pp. 63-104.
    [CrossRef]
  13. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  14. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  15. S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
    [CrossRef]
  16. N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
    [CrossRef]
  17. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
    [CrossRef]
  18. M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
    [CrossRef]
  19. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990).
    [CrossRef]
  20. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  21. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, "Resonant waveguide-grating switching device with nonlinear optical material," Appl. Opt. 38, 5181-5185 (1999).
    [CrossRef]
  22. A. Mizutani, H. Kikuta, and K. Iwata, "Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching," J. Opt. Soc. Am. A 22, 355-360 (2005).
    [CrossRef]
  23. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, "Light modulation with resonant grating-waveguide structures," Opt. Lett. 21, 1564-1566 (1996).
    [CrossRef] [PubMed]
  24. H. Ichikawa and H. Kikuta, "Dynamic guided-mode resonant grating filter with quadratic electro-optic effect," J. Opt. Soc. Am. A 22, 1311-1318 (2005).
    [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]

2005 (4)

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

A. Mizutani, H. Kikuta, and K. Iwata, "Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching," J. Opt. Soc. Am. A 22, 355-360 (2005).
[CrossRef]

H. Ichikawa and H. Kikuta, "Dynamic guided-mode resonant grating filter with quadratic electro-optic effect," J. Opt. Soc. Am. A 22, 1311-1318 (2005).
[CrossRef]

2004 (2)

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

2003 (6)

N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
[CrossRef]

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage," Appl. Opt. 42, 5918-5927 (2003).
[CrossRef] [PubMed]

2002 (3)

Y. J. Wang and G. O. Carlisle, "Optical properties of disperse-red-1-doped nematic liquid crystal," J. Mater. Sci.: Mater. Electron. 13, 173-178 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

2001 (1)

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

2000 (2)

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
[CrossRef]

1999 (1)

1996 (1)

1992 (1)

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1990 (1)

1981 (1)

Alcala, R.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Aoshima, Y.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Bagby, J. S.

Boye, R. R.

Carlisle, G. O.

Y. J. Wang and G. O. Carlisle, "Optical properties of disperse-red-1-doped nematic liquid crystal," J. Mater. Sci.: Mater. Electron. 13, 173-178 (2002).
[CrossRef]

Cases, R.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Choquette, K. D.

N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
[CrossRef]

Cunningham, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Danner, A. J.

N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
[CrossRef]

DeCristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

Dragostinova, V.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Duan, G.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Egami, C.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Engel, H.

Farrow, M. J.

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

Forchel, A.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Friesem, A. A.

Fujimura, H.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Furtak, T. E.

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

Gaylord, T. K.

Huang, Y.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Hvilsted, S.

Ichikawa, H.

Ilieva, D.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Ivanov, M.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Iwata, K.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Johansen, P. M.

T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
[CrossRef]

Kamp, M.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Kawata, Y.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Kikuta, H.

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

Kostuk, R. K.

Lelarge, F.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Liang, Z.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Lin, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Lin, W.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Liu, Z.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Luo, D.

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Luo, S.

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Luo, Y.

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

Magnusson, R.

Mahnkopf, S.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Marz, R.

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

Matharu, A. S.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Millaruelo, M.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Minchev, G.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Mizutani, A.

Moharam, M. G.

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

Nedelchev, L. L.

Nikolova, L.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Okomoto, N.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Oriol, L.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Pedersen, H. C.

T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
[CrossRef]

Pedersen, T. G.

T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
[CrossRef]

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Petrova, T.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Ramanujam, P. S.

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

Rodriguez, F. J.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Rosenblatt, D.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sanchez, C.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Sekkat, Z.

Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, eds. (Academic, 2002), pp. 63-104.
[CrossRef]

Sharon, A.

She, W.

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Steingrueber, R.

Sugihara, O.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Todorov, T.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

Tokushima, M.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

Tsuchimori, M.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Villacampa, B.

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

Walba, D. M.

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

Wang, H.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Wang, J.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Wang, S. S.

Wang, Y. J.

Y. J. Wang and G. O. Carlisle, "Optical properties of disperse-red-1-doped nematic liquid crystal," J. Mater. Sci.: Mater. Electron. 13, 173-178 (2002).
[CrossRef]

Watanabe, O.

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Weber, H. G.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Wu, P.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

Wu, S.

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Yamada, H.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

Yao, S.

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

Yi, Y. W.

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
[CrossRef]

Zeng, F.

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

Zhao, F.

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

Ziolkowski, R. W.

Appl. Opt. (2)

Appl. Phys. B (1)

Y. Luo, W. She, S. Wu, F. Zeng, and S. Yao, "Improvement of all-optical switching effect based on azobenzene-containing polymer films," Appl. Phys. B 80, 77-80 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, "Temperature-dependent light intensity controlled optical switching in azobenzene polymers," Appl. Phys. Lett. 86, 181902 (2005).
[CrossRef]

H. Wang, Y. Huang, Z. Liu, F. Zhao, W. Lin, J. Wang, and Z. Liang, "Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers," Appl. Phys. Lett. 82, 3394-3396 (2003).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation," Appl. Phys. Lett. 78, 1189-1191 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Mahnkopf, R. Marz, M. Kamp, G. Duan, F. Lelarge, and A. Forchel, "Tunable photonic crystal coupled-cavity laser," IEEE J. Quantum Electron. 40, 1306-1314 (2004).
[CrossRef]

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Yokouchi, A. J. Danner, and K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron. 9, 1439-1445 (2003).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

Y. J. Wang and G. O. Carlisle, "Optical properties of disperse-red-1-doped nematic liquid crystal," J. Mater. Sci.: Mater. Electron. 13, 173-178 (2002).
[CrossRef]

J. Opt. A (1)

T. G. Pedersen, P. M. Johansen, and H. C. Pedersen, "Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations," J. Opt. A 2, 272-278 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. A (1)

Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, "Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers," J. Vac. Sci. Technol. A 21, 1770-1775 (2003).
[CrossRef]

Opt. Lett. (1)

Polym. Adv. Technol. (1)

Y. Aoshima, C. Egami, Y. Kawata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, and N. Okomoto, "The optical properties of azobenzene-containing urethane-urea copolymer films for data storage," Polym. Adv. Technol. 11, 575-578 (2000).
[CrossRef]

Polymer (1)

F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, "Optical anisotropy and nonlinear optical properties of azobenzene methacrylic polymers," Polymer 45, 2341-2348 (2004).
[CrossRef]

React. Funct. Polym. (1)

S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003).
[CrossRef]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).
[CrossRef]

Other (2)

Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, eds. (Academic, 2002), pp. 63-104.
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Cross-sectional illustration of 1D GMRF.

Fig. 2
Fig. 2

(a) Absorption spectrum for 1.5 - μ m -thick polymer film containing 5 % DR1 and 95 % PMMA by weight, spun onto a blank glass microscope slide. (b) Absorption spectrum for a solution composed of 2 % DR1 and 98 % IPA occupying the thin layer between a microscope slide and a coverslip.

Fig. 3
Fig. 3

Calculated normal-incidence reflectance spectra with TM polarization for five different values of the superstrate refractive index: (a) 1.00, (b) 1.20, (c) 1.333, (d) 1.377, and (e) 1.479.

Fig. 4
Fig. 4

Measured normal-incidence reflectance spectrum with TM polarization of a fabricated GMRF incorporating a pure IPA superstrate.

Fig. 5
Fig. 5

Plotted points indicate the calculated spectral location of TM reflection peaks for several different superstrate material refractive indices. The continuous curve is a best-fit third-order polynomial, with R 2 = 1 .

Fig. 6
Fig. 6

Schematic showing the apparatus used to induce and measure changes in the GMRF reflection spectrum.

Fig. 7
Fig. 7

Measured change in spectral location of the reflection peak of a 5 % DR 1 / 95 % PMMA superstrate sample as a function of time for incident laser powers of (a) 10   mW , (b) 62   mW , and (c) 124   mW . TE-polarized laser illumination was initiated at an elapsed time of 20   s and was terminated at 120   s .

Fig. 8
Fig. 8

Measured change in spectral location of the reflection peak of a 5% DR 1 / 95% PMMA superstrate sample as a function of time for incident laser powers of (a) 10 mW, (b) 62   mW , and (c) 124   mW . TM-polarized laser illumination was initiated at an elapsed time of 20   s and was terminated at 120   s .

Fig. 9
Fig. 9

Maximum change in the spectral location of the reflection peak for 5 % DR 1 / 95 % PMMA superstrate samples at several values of laser illumination power. Squares indicate TE laser polarization, and triangles correspond to TM laser polarization.

Fig. 10
Fig. 10

Measured change in spectral location of the reflection peak as a function of time for a 2 % DR 1 / 98 % IPA superstrate sample at incident laser powers of (a) 100   mW , (b) 200   mW , (c) 300   mW , (d) 400   mW , (e) 500   mW , and (f) 600   mW . TM-polarized laser illumination was initiated at an elapsed time of 20 s and was terminated at 120   s .

Fig. 11
Fig. 11

Maximum change in the spectral location of the reflection peak of a 2 % DR 1 / 98 % IPA superstrate sample at several intensities of TM-polarized laser illumination.

Fig. 12
Fig. 12

Equilibrium superstrate refractive index at several intensities of TM-polarized laser illumination, as determined from the measured data of Fig. 11 in conjunction with the device sensitivity relationship discussed in Section 3.

Fig. 13
Fig. 13

Measured change in spectral location of the reflection peak as a function of time for a 2 % DR 1 / 98 % IPA superstrate sample at an incident laser power of 200   mW . TM-polarized laser illumination was initiated at an elapsed time of 20   s and was terminated at 120   s . TE-polarized laser illumination was initiated at an elapsed time of 320   s and was terminated at 420   s .

Tables (1)

Tables Icon

Table 1 Measured and Calculated Peak Locations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PWV  =  122 .07 n 3 295.11 n 2 + 290.12 n + 703.61.

Metrics