Abstract

We propose an optical configuration of a horizontal-switching liquid-crystal cell, consisting of a splayed liquid-crystal cell and uniaxial films, to improve the viewing angle characteristics by compensating for the phase dispersion in a diagonal direction. The optical design of the proposed configuration was performed on a Poincaré sphere with geometric calculations. By fabricating in-plane switching cells with the introduced configuration, we demonstrated their optical performances. As a result, we found that the diagonal viewing angle of the proposed horizontal-switching cell could be increased by 80% compared to a symmetrical viewing cone.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).
  2. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
    [CrossRef]
  3. J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays," Jpn. J. Appl. Phys. Part 1 39, 6388-6392 (2000).
    [CrossRef]
  4. J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
    [CrossRef]
  5. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
    [CrossRef]
  6. T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
    [CrossRef]
  7. E. Collett, Polarized Light (Marcel Dekker, 1993).
  8. J. E. Bigelow and R. A. Kashnow, "Poincaré sphere analysis of liquid crystal optics," Appl. Opt. 16, 2090-2096 (1977).
    [CrossRef] [PubMed]
  9. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

2002 (1)

T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
[CrossRef]

2001 (1)

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

2000 (1)

J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays," Jpn. J. Appl. Phys. Part 1 39, 6388-6392 (2000).
[CrossRef]

1998 (2)

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

1997 (1)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

1977 (1)

Anderson, J. E.

J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays," Jpn. J. Appl. Phys. Part 1 39, 6388-6392 (2000).
[CrossRef]

Bigelow, J. E.

Bos, P. J.

J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays," Jpn. J. Appl. Phys. Part 1 39, 6388-6392 (2000).
[CrossRef]

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Chen, J.

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Collett, E.

E. Collett, Polarized Light (Marcel Dekker, 1993).

Fujimura, Y.

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Ishinabe, T.

T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
[CrossRef]

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

Jyu, J. J.

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Kashnow, R. A.

Kelly, J. R.

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Kim, K. H.

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Kimura, S.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

Kusafuka, K.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

Miyashita, T.

T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
[CrossRef]

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

Saitoh, Y.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

Shimizu, H.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

Souk, J. H.

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Uchida, T.

T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
[CrossRef]

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Appl. Opt. (1)

IDW (1)

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs," IDW 485, 485-488 (2001).

Jpn. J. Appl. Phys. (3)

J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays," Jpn. J. Appl. Phys. Part 1 39, 6388-6392 (2000).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. Part 1 37, 4822-4828 (1998).
[CrossRef]

T. Ishinabe, T. Miyashita, and T. Uchida, "Wide-viewing-angle polarizer with a large wavelength range," Jpn. J. Appl. Phys. Part 1 41, 4559-4562 (2002).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (2)

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," SID Int. Symp. Digest Tech. Papers 29, 315-318 (1998).
[CrossRef]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optically compensated in-plane-switching-mode TFT-LCD panel," SID Int. Symp. Digest Tech. Papers 29, 706-709 (1997).
[CrossRef]

Other (2)

E. Collett, Polarized Light (Marcel Dekker, 1993).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Measured isocontrast contour of the conventional horizontal-switching cell (measured by ELDIM).

Fig. 2
Fig. 2

Change in the effective angle of the absorption angle of the crossed polarizers: (a) normal observation, (b) oblique observation.

Fig. 3
Fig. 3

Calculated transmission of light passing through a pair of crossed ideal O-type polarizers.

Fig. 4
Fig. 4

Optical configuration of the conventional horizontal-switching LC cell and polarization state of the oblique incident light in the LC cell: (a) optical structure, (b) polarization path on the Poincaré sphere. L 1 , L 2 , and L 3 represent the transfer path of the polarization by the lower TAC, the cell, and the upper TAC film, respectively.

Fig. 5
Fig. 5

Optical configuration of the proposed horizontal-switching LC cell and the polarization state of the oblique incident light in the LC cell: (a) optical structure, (b) polarization path on the Poincaré sphere.

Fig. 6
Fig. 6

Polarization state of the light passing through the proposed horizontal-switching cell on the Poincaré sphere in the tristimulus wavelengths R, G, and B.

Fig. 7
Fig. 7

Polarization state of light after passing through the upper A plate.

Fig. 8
Fig. 8

Polarization state of light after passing through the + C plate and upper TAC.

Fig. 9
Fig. 9

Calculated material dispersion of the upper A plate and the + C plate for optimization with the lower A plate: (a) with normal dispersion, (b) with flat dispersion, (c) with reverse dispersion.

Fig. 10
Fig. 10

Measured isocontrast contour of the proposed horizontal-switching cell, measured with EZContrast 160 D.

Tables (3)

Tables Icon

Table 1 Numerical Calculation Results for Each Optical Plate in the Case of Normal Dispersion of the Lower A Plate a

Tables Icon

Table 2 Numerical Calculation Results for Each Optical Plate in the Case of Flat Dispersion of the Lower A Plate a

Tables Icon

Table 3 Numerical Calculation Results for Each Optical Plate, in the Case of Reverse Dispersion of the Lower A Plate a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ = sin 1 { sin [ cos θ o sin ϕ c ( 1 sin 2 θ o sin 2 ϕ c ) 1 / 2 ] } ,
T leakage = 1 8 T 4 sin 2 2 ϕ sin 4 θ o ( 1 cos 2 ϕ sin 2 θ o ) ( 1 sin 2 ϕ sin 2 θ o ) .
Γ a = 2 π λ d [ n e ( 1 sin 2 θ sin 2 ϕ n e 2 sin 2 θ cos 2 ϕ n o 2 ) 1 / 2 n o ( 1 sin 2 θ n o 2 ) 1 / 2 ] ,
Γ C = 2 π λ d cos θ o [ n o 2 n e 2 n o 2 sin 2 θ o + n e 2 cos 2 θ o n o ] .
Γ U A = D J G = π 2 + ( - 1 ) i D J D = π 2 + ( 1 ) i sin 1 { sin [ arc ( D D ) ] sin [ arc ( D J ) ] } ,
arc ( D J ) = cos 1 { cos [ arc ( D D ) ] cos [ arc ( D J ) ] } ,
arc ( D J ) = 4 δ + ( 1 )  arc ( A D ) = 4 δ + ( 1 ) j sin 1 × ( tan [ arc ( D D ) ] tan { ( 1 ) k [ Γ A + cell ( 2 + ( 1 ) j / 2 ) π ] } ) ,
arc ( D D ) = sin 1 { ( 1 ) cos Γ A + cell sin [ arc ( A B ) ] } ,
arc ( AB ) = sin 1 ( sin Γ TAC cos 2 δ ) , i , j , k , l = 1  or   2 ,
Γ C = arc ( G J ) + Γ TAC .

Metrics