Abstract

Night vision for automobiles is an emerging safety feature that is being introduced for automotive safety. We develop what we believe is an innovative new night vision system using gated imaging principles. The concept of gated imaging is described and its basic advantages, including the backscatter reduction mechanism for improved vision through fog, rain, and snow. Evaluation of performance is presented by analyzing bar pattern modulation and comparing Johnson chart predictions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chapelon and F. Loones, Analysis of Road Traffic Injury Accidents Occurring at Night and/or in Foggy Conditions (National Observatory for Road Safety, Paris, France, 2001).
  2. A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
    [CrossRef]
  3. J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
    [CrossRef]
  4. J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
    [CrossRef]
  5. N. S. Martinelli and R. Seoane, "Automotive night vision system," in Thermosense XXI, D. H. LeMieux and J. R. Snell, Jr., eds., Proc. SPIE 3700, 343-346 (1999).
    [CrossRef]
  6. J. Busck, "Underwater 3D optical imaging with a gated viewing laser radar," Opt. Eng. 44, 116001 (2005).
    [CrossRef]
  7. I. P. Csorba, Image Tubes (Howard W. Sams & Company Incorporated, 1985), p. 79.
  8. R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
    [CrossRef]
  9. O. David and Y. Bornstein, Vehicle Mounted Night Vision System and Method, WO2004/013654A1 (World Intellectual Property Organization, 2002).
  10. N. S. Kopeika, A System Engineering Approach to Imaging, SPIE Press Monograph Vol. PM 38 (SPIE Press, 1998).
  11. G. C. Holst, Electro-Optical Imaging System Performance, SPIE Press Monograph Vol. PM 121 (SPIE Press, 2002).
  12. A. J. P. Theuwissen, Solid-State Imaging with CCD (Kluwer Academic, 1995).
  13. R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
    [CrossRef]

2005 (1)

J. Busck, "Underwater 3D optical imaging with a gated viewing laser radar," Opt. Eng. 44, 116001 (2005).
[CrossRef]

2004 (1)

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

2003 (2)

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

2001 (1)

J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
[CrossRef]

1999 (1)

N. S. Martinelli and R. Seoane, "Automotive night vision system," in Thermosense XXI, D. H. LeMieux and J. R. Snell, Jr., eds., Proc. SPIE 3700, 343-346 (1999).
[CrossRef]

1997 (1)

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Aguilar, M.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Barnard, K. J.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

Bornstein, Y.

O. David and Y. Bornstein, Vehicle Mounted Night Vision System and Method, WO2004/013654A1 (World Intellectual Property Organization, 2002).

Busck, J.

J. Busck, "Underwater 3D optical imaging with a gated viewing laser radar," Opt. Eng. 44, 116001 (2005).
[CrossRef]

Carrick, J. E.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Chapelon, J.

J. Chapelon and F. Loones, Analysis of Road Traffic Injury Accidents Occurring at Night and/or in Foggy Conditions (National Observatory for Road Safety, Paris, France, 2001).

Csorba, I. P.

I. P. Csorba, Image Tubes (Howard W. Sams & Company Incorporated, 1985), p. 79.

David, O.

O. David and Y. Bornstein, Vehicle Mounted Night Vision System and Method, WO2004/013654A1 (World Intellectual Property Organization, 2002).

Devitt, N.

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

Driggers, R. G.

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

Fay, D. A.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Fohl, T.

J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
[CrossRef]

Gove, A. N.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Halford, C.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance, SPIE Press Monograph Vol. PM 121 (SPIE Press, 2002).

Jacobs, E. L.

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Kopeika, N. S.

N. S. Kopeika, A System Engineering Approach to Imaging, SPIE Press Monograph Vol. PM 38 (SPIE Press, 1998).

Loones, F.

J. Chapelon and F. Loones, Analysis of Road Traffic Injury Accidents Occurring at Night and/or in Foggy Conditions (National Observatory for Road Safety, Paris, France, 2001).

Martinelli, N. S.

N. S. Martinelli and R. Seoane, "Automotive night vision system," in Thermosense XXI, D. H. LeMieux and J. R. Snell, Jr., eds., Proc. SPIE 3700, 343-346 (1999).
[CrossRef]

O'Connor, J. D.

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

Olson, J.

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

Racamato, J. P.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Remillard, J. T.

J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
[CrossRef]

Savoye, E. D.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Seoane, R.

N. S. Martinelli and R. Seoane, "Automotive night vision system," in Thermosense XXI, D. H. LeMieux and J. R. Snell, Jr., eds., Proc. SPIE 3700, 343-346 (1999).
[CrossRef]

Theuwissen, A. J. P.

A. J. P. Theuwissen, Solid-State Imaging with CCD (Kluwer Academic, 1995).

Vollmerhausen, R. H.

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

Waxman, A. M.

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

Weber, W. H.

J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
[CrossRef]

Opt. Eng. (4)

J. D. O'Connor, R. G. Driggers, R. H. Vollmerhausen, N. Devitt, and J. Olson, "Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands," Opt. Eng. 42, 3047-3052 (2003).
[CrossRef]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003).
[CrossRef]

J. Busck, "Underwater 3D optical imaging with a gated viewing laser radar," Opt. Eng. 44, 116001 (2005).
[CrossRef]

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Proc. SPIE (3)

N. S. Martinelli and R. Seoane, "Automotive night vision system," in Thermosense XXI, D. H. LeMieux and J. R. Snell, Jr., eds., Proc. SPIE 3700, 343-346 (1999).
[CrossRef]

A. M. Waxman, E. D. Savoye, D. A. Fay, M. Aguilar, A. N. Gove, J. E. Carrick, and J. P. Racamato, "Electronic imaging aids for night driving: low-light CCD, uncooled thermal IR, and color-fused visible/LWIR," in Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, A. C. Chachich and M. J. de Vries, eds., Proc. SPIE 2902, 62-73 (1997).
[CrossRef]

J. T. Remillard, W. H. Weber, and T. Fohl, "Diode laser illuminators for night-vision applications," in Testing, Reliability, and Applications of Optoelectronic Devices, A. K. Chin, N. K. Dutta, K. J. Linden, and S. C. Wang, eds., Proc. SPIE 4285, 14-22 (2001).
[CrossRef]

Other (6)

O. David and Y. Bornstein, Vehicle Mounted Night Vision System and Method, WO2004/013654A1 (World Intellectual Property Organization, 2002).

N. S. Kopeika, A System Engineering Approach to Imaging, SPIE Press Monograph Vol. PM 38 (SPIE Press, 1998).

G. C. Holst, Electro-Optical Imaging System Performance, SPIE Press Monograph Vol. PM 121 (SPIE Press, 2002).

A. J. P. Theuwissen, Solid-State Imaging with CCD (Kluwer Academic, 1995).

J. Chapelon and F. Loones, Analysis of Road Traffic Injury Accidents Occurring at Night and/or in Foggy Conditions (National Observatory for Road Safety, Paris, France, 2001).

I. P. Csorba, Image Tubes (Howard W. Sams & Company Incorporated, 1985), p. 79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Gating scheme; L ( t ) is the laser operation timing (dotted curve) on = 1, off = 0, Camera(t) is the camera aperture timing (dashed curve) on = 1, off = 0.

Fig. 2
Fig. 2

RPG for the gated timing of Fig. 1.

Fig. 3
Fig. 3

Acquiring the first laser pulse in the second camera opening.

Fig. 4
Fig. 4

Gated mode under hazy conditions.

Fig. 5
Fig. 5

Nongated node under hazy conditions.

Fig. 6
Fig. 6

System block diagram.

Fig. 7
Fig. 7

System MTF in cycle/mrad, Rs is the spatial frequency [cycle/mm], and f is the focal length.

Fig. 8
Fig. 8

System performance, Target(−5, R) is the target size in meters required for recognition at 10 5 lx background illumination as a function of the range (R) in meters.

Fig. 9
Fig. 9

Resolution chart range predictions. At 70   m a 12 .5   cm target should be detected with 50% probability. Background with a 10 5 lx illumination.

Fig. 10
Fig. 10

Man holding a resolution chart at 20   m .

Fig. 11
Fig. 11

Resolution chart at 70   m .

Fig. 12
Fig. 12

Resolution chart at 20   m zoomed in digitally.

Fig. 13
Fig. 13

Modulation analysis of the resolution chart at 20   m . Y axis is the gray level, X axis is the pixel number.

Fig. 14
Fig. 14

Resolution target modulation at 70   m . The Y axis is the gray level, the X axis is the pixel number.

Fig. 15
Fig. 15

Night vision system installed on General Motors Cadillac Escalade.

Fig. 16
Fig. 16

Sample picture of a pedestrian at 200   m distance next to an oncoming vehicle.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

RPG ( R ) = L ( t 2 R c ) Camera ( t ) ,
T = Tl + Ti + Tc .
Contrast = I Target Total I Background Total I Target Total + I Background Total = I Target I Background I Background + I Target + 2 I Air + 2 I Backscatter ,
I Target Total = I Target + I Air + I Backscatter , I Background Total = I Background + I Air + I Backscatter .
d I CBS = P tan ( θ ) 2 Z 2 + A 0 [ e γ Z e γ ( Z + d Z ) ] G e γ Z ,
d I BS = P e 2 γ Z 4 F n 2 ( θ Z ) 2 ( 1 e γ d Z ) G ,
d I BS = P e X γ 2 d X F n 2 θ 2 2 X 2 G .
I Backscatter = R on R off d I BS = R on 2 γ R off 2 γ P e X γ 2 d X F n 2 θ 2 2 X 2 G .
( Ts R ) = N rec ( R s lim f ) 1 ,
I max I min I max + I min = 0.053.
I max I min I max + I min = 0.071.

Metrics