Abstract

It has recently been reported that by using a spectral-tuning algorithm, the photocurrents of multiple detectors with spectrally overlapping responsivities can be optimally combined to synthesize, within certain limits, the response of a detector with an arbitrary responsivity. However, it is known that the presence of noise in the photocurrent can degrade the performance of this algorithm significantly, depending on the choice of the responsivity spectrum to be synthesized. We generalize this algorithm to accommodate noise. The results are applied to quantum-dot mid-infrared detectors with bias-dependent spectral responses. Simulation and experiment are used to show the ability of the algorithm to reduce the adverse effect of noise on its spectral-tuning capability.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vane and A. F. H. Goetz, "Terrestrial imaging spectroscopy," Remote Sens. Environ. 24, 1-29 (1988).
    [CrossRef]
  2. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
    [CrossRef]
  3. R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
    [CrossRef]
  4. T. H. Barnes, "Photodiode array Fourier transform spectrometer with improved dynamic range," Appl. Opt. 24, 3702-3706 (1985).
  5. G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
    [CrossRef]
  6. L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
    [CrossRef]
  7. L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).
  8. J. S. Tyo and T. S. Turner, "Variable retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing," Appl. Opt. 40, 1450-1458 (2001).
  9. W. R. Bell, "Multispectral Thermal Imager--overview," in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, S. S. Shen and M. R. Descour, eds., Proc. SPIE 4381, 173-183 (2001).
    [CrossRef]
  10. U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
    [CrossRef]
  11. H. J. Caulfield, "Artificial color," Neurocomputing 51, 463-465 (2003).
    [CrossRef]
  12. P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
    [CrossRef]
  13. P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
    [CrossRef]
  14. S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.
  15. S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D 38, 2142-2150 (2005).
    [CrossRef]
  16. U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
    [CrossRef]
  17. Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).
  18. Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
    [CrossRef]
  19. Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.
  20. B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).
  21. B. Paskaleva and M. M. Hayat, "Optimized algorithm for spectral band selection for rock-type classification," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 131-138 (2005).
    [CrossRef]
  22. B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.
  23. V. Ryzhii, "Physical model and analysis of quantum-dot infrared photodetectors with blocking layer," J. Appl. Phys. 89, 5117-5124 (2001).
    [CrossRef]
  24. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 1996).
  25. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  26. H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, 2002).
  27. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
    [CrossRef]
  28. B. F. Levine, "Quantum-well infrared photodetectors," J. Appl. Phys. 74, R1-R81 (1993).
    [CrossRef]
  29. J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
    [CrossRef]
  30. F. F. Sabins, Remote Sensing: Principles and Interpretation, 3rd ed. (Freeman, 1997).

2005 (4)

S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D 38, 2142-2150 (2005).
[CrossRef]

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

B. Paskaleva and M. M. Hayat, "Optimized algorithm for spectral band selection for rock-type classification," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 131-138 (2005).
[CrossRef]

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

2004 (4)

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

2003 (1)

H. J. Caulfield, "Artificial color," Neurocomputing 51, 463-465 (2003).
[CrossRef]

2001 (4)

V. Ryzhii, "Physical model and analysis of quantum-dot infrared photodetectors with blocking layer," J. Appl. Phys. 89, 5117-5124 (2001).
[CrossRef]

J. S. Tyo and T. S. Turner, "Variable retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing," Appl. Opt. 40, 1450-1458 (2001).

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

W. R. Bell, "Multispectral Thermal Imager--overview," in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, S. S. Shen and M. R. Descour, eds., Proc. SPIE 4381, 173-183 (2001).
[CrossRef]

2000 (1)

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

1999 (1)

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

1995 (4)

R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
[CrossRef]

G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
[CrossRef]

L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
[CrossRef]

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

1993 (2)

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

B. F. Levine, "Quantum-well infrared photodetectors," J. Appl. Phys. 74, R1-R81 (1993).
[CrossRef]

1988 (1)

G. Vane and A. F. H. Goetz, "Terrestrial imaging spectroscopy," Remote Sens. Environ. 24, 1-29 (1988).
[CrossRef]

1985 (1)

Anderson, M. E.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
[CrossRef]

Annamalai, S.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

Barnes, T. H.

Basedow, R. W.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
[CrossRef]

Beekman, D. W.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

Bell, W. R.

W. R. Bell, "Multispectral Thermal Imager--overview," in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, S. S. Shen and M. R. Descour, eds., Proc. SPIE 4381, 173-183 (2001).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 1996).

Boreman, G. D.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

Campbell, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Carmer, D. C.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
[CrossRef]

Carothers, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, "Artificial color," Neurocomputing 51, 463-465 (2003).
[CrossRef]

Chrien, T.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

Dowd, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Dutta, M.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

Enmark, H.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Fogler, R. J.

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

Forman, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Franklin, A.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Fronterhouse, D. S.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Goetz, A. F. H.

G. Vane and A. F. H. Goetz, "Terrestrial imaging spectroscopy," Remote Sens. Environ. 24, 1-29 (1988).
[CrossRef]

Gray, A.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Green, R.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Hansen, E.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Hayat, M. M.

B. Paskaleva and M. M. Hayat, "Optimized algorithm for spectral band selection for rock-type classification," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 131-138 (2005).
[CrossRef]

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

Kennerly, S. W.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Klotzkin, D.

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

Krishna, S.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D 38, 2142-2150 (2005).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Levine, B. F.

B. F. Levine, "Quantum-well infrared photodetectors," J. Appl. Phys. 74, R1-R81 (1993).
[CrossRef]

Liu, M.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Martinez, M.

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

McCann, P. J.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

Meigs, A. D.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Moya, M. M.

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

Namjou, K.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

Otten, L. J.

L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
[CrossRef]

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
[CrossRef]

Paskaleva, B.

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

B. Paskaleva and M. M. Hayat, "Optimized algorithm for spectral band selection for rock-type classification," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 131-138 (2005).
[CrossRef]

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

Phillips, J.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

Phillips, J. D.

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

Porter, W.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Rafert, G. B.

L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
[CrossRef]

G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
[CrossRef]

Rafert, J. B.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Raghavan, S.

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Robinson, M. W.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Rotella, P.

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Ryzhii, V.

V. Ryzhii, "Physical model and analysis of quantum-dot infrared photodetectors with blocking layer," J. Appl. Phys. 89, 5117-5124 (2001).
[CrossRef]

Sabins, F. F.

F. F. Sabins, Remote Sensing: Principles and Interpretation, 3rd ed. (Freeman, 1997).

Sakoglu, U.

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

Sears, R. D.

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

Sellar, R. G.

G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
[CrossRef]

L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
[CrossRef]

Stark, H.

H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, 2002).

Stintz, A.

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Sun, K.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Tumolillo, T.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Turner, T. S.

Tyo, J. S.

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

U. Sakoglu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

J. S. Tyo and T. S. Turner, "Variable retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing," Appl. Opt. 40, 1450-1458 (2001).

Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Tyo, S.

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

Vane, G.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

G. Vane and A. F. H. Goetz, "Terrestrial imaging spectroscopy," Remote Sens. Environ. 24, 1-29 (1988).
[CrossRef]

Varangis, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Wang, Z.

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

Weisse-Bernstein, N.-R.

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

Woods, J.

H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, 2002).

Zilko, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320 × 256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193501-3 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, "Self-assembled InAs-GaAs quantum-dot intersubband detectors," IEEE J. Quantum Electron. 35, 936-942 (1999).
[CrossRef]

J. Appl. Phys. (2)

B. F. Levine, "Quantum-well infrared photodetectors," J. Appl. Phys. 74, R1-R81 (1993).
[CrossRef]

V. Ryzhii, "Physical model and analysis of quantum-dot infrared photodetectors with blocking layer," J. Appl. Phys. 89, 5117-5124 (2001).
[CrossRef]

J. Cryst. Growth (1)

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, "Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors," J. Cryst. Growth 227, 27-35 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D 38, 2142-2150 (2005).
[CrossRef]

Neurocomputing (1)

H. J. Caulfield, "Artificial color," Neurocomputing 51, 463-465 (2003).
[CrossRef]

Proc. SPIE (9)

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, "Quantum dot carrier dynamics and far infrared devices," in Optoelectronics Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84-89 (2000).
[CrossRef]

U. Sakoglu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, "Quantum dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering," in Nanosensing: Materials and Devices, M. Saif Islam and A. K. Dutta, eds., Proc. SPIE 5593, 396-407 (2004).
[CrossRef]

Z. Wang, B. Paskaleva, J. S. Tyo, and M. M. Hayat, "Canonical correlations analysis for assessing the performance of adaptive spectral imagers," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 23-34 (2005).
[CrossRef]

B. Paskaleva and M. M. Hayat, "Optimized algorithm for spectral band selection for rock-type classification," in Defense and Security Symposium, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5806, 131-138 (2005).
[CrossRef]

R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: implementation and performance," in Imaging Spectrometry V, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258-267 (1995).
[CrossRef]

G. B. Rafert, R. G. Sellar, and L. J. Otten III, "An interactive performance model for spatially modulated Fourier transform spectrometers," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 410-417 (1995).
[CrossRef]

L. J. Otten III, G. B. Rafert, and R. G. Sellar, "The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing," in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 418-424 (1995).
[CrossRef]

L. J. Otten III, A. D. Meigs, A. Franklin, R. D. Sears, M. W. Robinson, J. B. Rafert, and D. S. Fronterhouse, "On board spectral imager data processor," in Imaging Spectrometry V, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3753, 86-94 (1995).

W. R. Bell, "Multispectral Thermal Imager--overview," in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, S. S. Shen and M. R. Descour, eds., Proc. SPIE 4381, 173-183 (2001).
[CrossRef]

Remote Sens. Environ. (2)

G. Vane and A. F. H. Goetz, "Terrestrial imaging spectroscopy," Remote Sens. Environ. 24, 1-29 (1988).
[CrossRef]

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, "The airborne visible infrared imaging spectrometer," Remote Sens. Environ. 44, 127-143 (1993).
[CrossRef]

Other (9)

F. F. Sabins, Remote Sensing: Principles and Interpretation, 3rd ed. (Freeman, 1997).

B. Paskaleva, M. M. Hayat, S. Tyo, Z. Wang, and M. Martinez, "Feature selection for spectral sensors with overlapping noisy spectral bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 1996).

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, 2002).

Z. Wang, B. Paskaleva, M. M. Hayat, and J. S. Tyo, "Analyzing spectral sensors with highly overlapping bands," presented at the Twelfth SPIE Defense and Security Symposium on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, Orlando, Fla., 18-20 April 2006.

B. Paskaleva, M. M. Hayat, M. M. Moya, and R. J. Fogler, "Multispectral rock type separation and classification," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 152-163 (2004).

Z. Wang, U. Sakoglu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and S. Krishna, "Real-time implementation of spectral matched filtering algorithms using adaptive focal plane array technology," in Imaging Spectrometry X, A. G. Tescher, ed., Proc. SPIE 5546, 73-83 (2004).

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, J. S. Tyo, and S. W. Kennerly, "Bias-dependent tunable response of normal incidence long wave infrared quantum-dot photodetectors," in Proceedings of the IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, 2002) Vol. 2, pp. 754-755.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flow chart of the entire noise-modified spectral-tuning algorithm.

Fig. 2
Fig. 2

Schematic of the 15-layer asymmetric InAs / In 0.15 Ga 0.85 As DWELL detector structure sandwiched between two highly doped n - GaAs contact layers, grown on a semi-insulating GaAs substrate.[27]

Fig. 3
Fig. 3

Total and dark-current profiles of the DWELL detector with a 300 μm diameter at 50 K . The open diamonds and open squares represent the total current with and without the 3 mm polystyrene filter, respectively. The filled circles represent the dark current at 50 K . Inset: Noise standard deviation.

Fig. 4
Fig. 4

Peak-normalized spectral response of the QDIP for different bias voltages.

Fig. 5
Fig. 5

Performance of the algorithm in synthesizing the relative power spectrum of (a) a blackbody source and (b) a 3 mm polystyrene filter by using the desired responsivity of ideal triangular filters of FWHM of 0.5 μm , under moderately low noise (with a SNR of 100). The crosses and plusses represent the original tuning algorithm that does not accommodate the noise and the new noise-modified tuning algorithm, respectively. The filled circles represent the reconstruction by using ideal responsivity. Under very low noise (for a SNR of more than 2000 ), the ideal reconstruction (filled circles) and algorithms' reconstruction (plusses and crosses) overlap.

Fig. 6
Fig. 6

Same as Fig. 5 but with a wider desired triangular responsivity with a FWHM of 1.5 μm .

Fig. 7
Fig. 7

Comparison of the original algorithm that does not accommodate noise (thin curves) and the noise-modified algorithm (thick curves); the performance shown in terms of average normalized root-mean-square error (NRMSE) versus the photocurrent SNR for desired resolution of (a) narrow FWHM of 0.5 μm (dashed curves) and 1.0 μm (solid curves) and (b) wide FWHMs of 1.5 μm (dashed curves) and 2.0 μm (solid curves).

Tables (1)

Tables Icon

Table 1 Five-band Multispectral Performance of the Algorithm in Synthesizing the Relative Power Spectrum of a Blackbody Source and a 3 mm Polystyrene Filter in the Case of Moderate Noise (SNR = 20) Using a Synthesized Triangular Filter with FWHM = 1.0 μm

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

Y k = y p , k + d k + N k ,
SNR k   ≜   y p , k σ N , k .
y p , k = A e λ min λ max R k ( λ ) g ( λ , Z ) d λ ,
Y p , k   ≜   y p , k + N k
= A e λ min λ max [ R k ( λ ) + N k A e λ min λ max g ( λ , Z ) ] g ( λ , Z ) ,
A e λ min λ max [ R k ( λ ) + R k ( λ ) N k A e λ min λ max R k ( λ ) g ( λ , Z ) ] × g ( λ , Z ) ,
= A e λ min λ max R k ( λ ) ( 1 + N k σ N , k SNR k ) g ( λ , Z ) .
R ˜ k ( λ )   ≜   R k ( λ ) ( 1 + N k σ N , k SNR k ) .
r ^ c ( λ ) = k = 1 K w c , k R ˜ k ( λ ) .
y c = A e λ min λ max g ( λ , Z ) r c ( λ )
Y ^ c = A e λ min λ max g ( λ , Z ) [ k = 1 K w c , k R ˜ k ( λ ) ] .
ϵ 2 ( r c , D ) = E { | A e λ min λ max g ( λ , Z ) [ r c ( λ ) - k = 1 K w c , k R k ( λ ) × ( 1 + N k σ N , k SNR k ) ] | 2 } .
Δ λ L j = 1 L { r c 2 ( λ j ) - 2 r c ( λ j ) [ k = 1 K w c , k R k ( λ j ) ] + [ k = 1 K w c , k R k ( λ j ) ] 2 + [ k = 1 K w c , k 2 R k 2 ( λ j ) SNR k 2 ] } .
w c = [ A T A + Φ ] - 1 Π c ,
Φ = [ R 1 T R 1 SNR 1 2 0 0 0 R 2 T R 2 SNR 2 2 0 0 0 R K T R K SNR K 2 ] ,
Π c = A T r c .
Δ λ L - 1 [ r c - Aw c 2 + w c T Φ w c + α QAw c 2 ] ,
Q = [ 1 - 1 - 1 2 - 1 - 1 2 - 1 - 1 1 ] ,
w c = [ A T A + Φ + α Q T A T AQ ] - 1 Π c .
y p , k = A e λ min λ max R k p f k ( λ ) g ( λ , Z ) .
R k ( λ ) = R k p f k ( λ ) .
G ( λ , Z ) = g ( λ , Z ) W ( λ , Z ) ,
d nor = d 0 - d 1 0.5 ( d 0 + d 1 ) ,
E [ | y c - Y ^ c | 2 ] = E { | A e λ min λ max g ( λ , Z ) [ r c ( λ ) - k = 1 K w c , k R k ( λ ) ( 1 + N k SNR k σ N , k ) ] | 2 } .
E [ | y c - Y ^ c | 2 ] E [ A e λ min λ max | g ( λ , Z ) | 2 ] × [ λ min λ max | r c ( λ ) k = 1 K w c , k R k ( λ ) × ( 1 + N k SNR k σ N , k ) | 2 ] .
E [ λ min λ max | r c ( λ ) - k = 1 K w c , k R k ( λ ) ( 1 + N k SNR k σ N , k ) | 2 ] .
λ min λ max [ r c 2 ( λ ) - 2 r c ( λ ) k = 1 K w c , k R k ( λ ) ( 1 + E [ N k ] SNR k σ N , k ) ] + λ min λ max E [ | k = 1 K w c , k R k ( λ ) ( 1 + N k SNR k σ N , k ) | 2 ] .
[ k = 1 K w c , k R k ( λ ) ( 1 + E [ N k ] SNR k σ N , k ) ] 2 ,
λ min λ max { r c ( λ ) - k = 1 K w c , k R k ( λ ) ( 1 + E [ N k ] SNR k σ N , k ) } 2 + λ min λ max { k = 1 K l = 1 K w c , k w c , l ( E [ N k N l ] - E [ N k ] E [ N l ] ) R k ( λ ) R l ( λ ) σ N , k σ N , l SNR k SNR l } .
[ k = 1 K w c , k 2 R k 2 ( λ ) SNR k 2 ] ,
Δλ L j = 1 L { [ r c ( λ j ) - k = 1 K w c , k R k ( λ j ) ( 1 + E [ N k ] SNR k σ N , k ) ] 2 + [ k = 1 K w c , k 2 R k 2 ( λ j ) SNR k 2 ] } .
Δ λ L j = 1 L { r c 2 ( λ j ) - 2 r c ( λ j ) [ k = 1 K w c , k R k ( λ j ) ] + [ k = 1 K w c , k R k ( λ j ) ] 2 + [ k = 1 K w c , k 2 R k 2 ( λ j ) SNR k 2 ] } .
j = 1 L r c ( λ j ) R s ( λ j ) = j = 1 L { R s ( λ j ) [ k = 1 K w c , k R k ( λ j ) ] + w c , s R s 2 ( λ j ) SNR s 2 } .
j = 1 L r c ( λ j ) R s ( λ j ) = [ k = 1 K w c , k j = 1 L R s ( λ j ) R k ( λ j ) ] + w c , s SNR s 2 [ j = 1 L R s 2 ( λ j ) ] .
Π c , s = ( k = 1 K w c , k ϕ s , k ) + w c , s SNR s 2 ϕ s , s .
Π c = [ A T A + Φ ] w c ,

Metrics