Abstract

Diffractive wavefront control with spatial light modulator technology has been successfully demonstrated both as a means of steering optical wavefronts and for compensating large optical aberrations. We describe the use of a spatial light modulator operating as a programmable diffractive optic to record extended-field-of-view mosaic images centered about a large off-axis field angle. A gimbaled primary mirror allows the nominal viewing angle to be varied, and diffractive wavefront steering allows images to be acquired at discrete increments in the field angle about the nominal angle. Diffractive wavefront compensation corrects aberrations associated with the primary mirror orientation and changes in field angle introduced by diffractive wavefront steering. A time sequence of images recorded at discrete increments in the field angle is then digitally combined to create a high-pixel-count mosaic image. The effects of diffraction efficiency and wavelength-dependent wavefront errors on image quality are analyzed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995).
    [CrossRef]
  2. J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001).
    [CrossRef]
  3. A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
    [CrossRef]
  4. H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.
  5. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
    [CrossRef]
  6. K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).
  7. M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
    [CrossRef]
  8. X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
    [CrossRef]
  9. M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).
  10. D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
    [CrossRef]
  11. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).
  12. G. J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements, MIT Lincoln Laboratory Technical Rep. 854 (MIT, 1989), pp. 1-47.
  13. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).
  14. J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
    [CrossRef]
  15. H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
    [CrossRef]
  16. R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).
  17. P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).
  18. M. T. Gruneisen, R. C. Dymale, and M. B. Garvin, "Wavelength-dependent characteristics of modulo N lamba 0 optical wavefront control," Appl. Opt. 45, 4075-4083 (2006).
    [CrossRef]
  19. M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).
  20. M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).
  21. J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, (Academic, 1992), Vol. 11, Chap. 1.
  22. D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996).
    [CrossRef]
  23. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1992).
  24. Space Imaging: One Year Viewed from Space, http://www.spaceimaging.com/gallery/9-11.

2006 (1)

2005 (6)

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).

P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).

2004 (3)

J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
[CrossRef]

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

2003 (1)

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

2002 (1)

K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).

2001 (2)

M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).

J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001).
[CrossRef]

2000 (1)

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

1999 (1)

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

1996 (1)

D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996).
[CrossRef]

1995 (1)

R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995).
[CrossRef]

1994 (1)

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

Anderson, J. E.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Bauchert, K. A.

K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).

Bierden, P.

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

Bifano, T.

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

Bos, P.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Bos, P. J.

P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).

Cornelissen, S.

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

Creath, K.

J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, (Academic, 1992), Vol. 11, Chap. 1.

Deramo, M.

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

DeSandre, L. F.

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

Dou, R.

R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995).
[CrossRef]

Dymale, R. C.

M. T. Gruneisen, R. C. Dymale, and M. B. Garvin, "Wavelength-dependent characteristics of modulo N lamba 0 optical wavefront control," Appl. Opt. 45, 4075-4083 (2006).
[CrossRef]

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

Fisch, M.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Furman, A.

K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).

Garvin, M. B.

M. T. Gruneisen, R. C. Dymale, and M. B. Garvin, "Wavelength-dependent characteristics of modulo N lamba 0 optical wavefront control," Appl. Opt. 45, 4075-4083 (2006).
[CrossRef]

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

Giles, C. R.

R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).

Giles, M. K.

J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001).
[CrossRef]

R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1992).

Gruneisen, M. T.

M. T. Gruneisen, R. C. Dymale, and M. B. Garvin, "Wavelength-dependent characteristics of modulo N lamba 0 optical wavefront control," Appl. Opt. 45, 4075-4083 (2006).
[CrossRef]

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).

Guthals, D.

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

Hara, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Hatzinakos, D.

D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996).
[CrossRef]

Hui, J. R.

J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
[CrossRef]

Igasaki, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Inoue, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Ishikawa, M.

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Joswick, M.

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

Kim, J.

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

Kirk, A.

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

Kobayashi, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Kundur, D.

D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996).
[CrossRef]

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Lubin, D. L.

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).

Martinez, T.

M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).

McManamon, P.

P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).

Miranda, F.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Mukohzaka, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Pouch, J.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Rha, J.

J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001).
[CrossRef]

Rodney, P. J.

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

Rotge, J. R.

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

Ryf, R.

R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).

Serati, S. A.

K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).

Sergan, V.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Shi, J.

P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).

Sox, D.

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

Stuart, H. R.

R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).

Swanson, G. J.

G. J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements, MIT Lincoln Laboratory Technical Rep. 854 (MIT, 1989), pp. 1-47.

Tabata, T.

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

Toyoda, H.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Voelz, D. G.

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

Wang, B.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Wang, X.

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

Warde, C.

J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1992).

Wu, M. H.

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Wu, X.

J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
[CrossRef]

Wyant, J. C.

J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, (Academic, 1992), Vol. 11, Chap. 1.

Yoshida, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

Zhu, H.

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

Appl. Opt. (1)

High-Resolution Wavefront Control: Methods, Devices, and Applications III (1)

M. T. Gruneisen, T. Martinez, and D. L. Lubin, "Dynamic holography for high-dynamic-range two-dimensional laser wavefront control," in High-Resolution Wavefront Control: Methods, Devices, and Applications III , J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 224-238 (2001).

IEEE Signal Process. Mag. (1)

D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Process. Mag. 13, 43-64 (1996).
[CrossRef]

Opt. Commun. (1)

A. Kirk, T. Tabata, M. Ishikawa, and H. Toyoda, "Reconfigurable computer generated holograms," Opt. Commun. 105, 302-308 (1994).
[CrossRef]

Opt. Eng. (4)

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators," Opt. Eng. 43, 1387-1393 (2004).
[CrossRef]

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Compensated telescope system with programmable diffractive optic," Opt. Eng. 44, 023201 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependent characteristics of a telescope system with diffractive wavefront control," Opt. Eng. 44, 068002 (2005).

M. T. Gruneisen, R. C. Dymale, J. R. Rotge, D. G. Voelz, and M. Deramo, "Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter," Opt. Eng. 44, 103202-1-103202-5 (2005).

Opt. Rev. (1)

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Proc. SPIE (8)

X. Wang, B. Wang, J. Pouch, F. Miranda, M. Fisch, J. E. Anderson, V. Sergan, and P. Bos, "Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer," in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 139-146 (2003).
[CrossRef]

R. Dou and M. K. Giles, "Programmable phase grating and beam steerer by operating a LCTV," in Advanced Imaging Technologies and Commercial Applications, N. Clark and J. D. Gonglewski, eds., Proc. SPIE 2566, 26-34 (1995).
[CrossRef]

J. Rha and M. K. Giles, "Implementation of an adaptive Shack-Hartmann sensor using a phase-modulated liquid crystal spatial light modulator," in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4493, 80-87 (2001).
[CrossRef]

J. R. Hui, X. Wu, and C. Warde, "Addressing large arrays of electrostatic actuators for adaptive optics applications," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 17-27 (2004).
[CrossRef]

H. Zhu, P. Bierden, S. Cornelissen, T. Bifano, and J. Kim, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, and M. K. Giles, eds., Proc. SPIE 5553, 39-45 (2004).
[CrossRef]

R. Ryf, H. R. Stuart, and C. R. Giles, "MEMS tip/tilt and piston mirror arrays as diffractive optical elements," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 5894OC1-5894OC-11 (2005).

D. Guthals, D. Sox, M. Joswick, and P. J. Rodney, "Real-time holographic compensation of large optics for deployment in space," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4124, 245-256 (2000).
[CrossRef]

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, "Agile-field telescope system with diffractive wavefront control," in Advanced Wavefront Control: Methods, Devices, and Applications III, M. T. Gruneisen, J. D. Gonglewski, and M. K. Giles, eds., Proc. SPIE 5894, 589414.1-589414.6 (2005).

Other (7)

J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, (Academic, 1992), Vol. 11, Chap. 1.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1992).

Space Imaging: One Year Viewed from Space, http://www.spaceimaging.com/gallery/9-11.

G. J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements, MIT Lincoln Laboratory Technical Rep. 854 (MIT, 1989), pp. 1-47.

P. McManamon, J. Shi, and P. J. Bos, "Broadband optical phased array beam steering," Opt. Eng. 44, 128004.1-128004.5 (2005).

H. Toyoda, Y. Kobayashi, N. Yoshida, Y. Igasaki, T. Hara, M. Ishikawa, and M. H. Wu, "High efficient electrically addressable spatial light modulator for reconfigurable optical connection," in Spatial Light Modulators 1999, Vol. SMB3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), pp. 14-16.

K. A. Bauchert, S. A. Serati, and A. Furman, "Advances in liquid crystal spatial light modulators," in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4734, 35-43 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the compensated telescope system showing locations of 10° off-axis object plane, primary mirror, PDO, relay optics RO1, RO2, and RO3, and image plane.

Fig. 2
Fig. 2

Graphic representation of a discrete-element step approximation to an optical-path function modulo λ r as a function of spatial coordinate x. The dotted curve shows an optical-path function, the dashed line shows the same function modulo λ r , and the solid lines show the discrete-element approximation to the modulo λ r function including a nonunity fill factor.

Fig. 3
Fig. 3

Off-axis compensated imaging demonstration with (a) off-axis uncompensated image with about 40 waves of aberration, (b) gray-scale representation of the compensating optical-path function modulo λ r , and (c) near-diffraction-limited compensated image.

Fig. 4
Fig. 4

Measured MTF for off-axis imaging telescope with approximately 40 waves of aberration compensated by a programmable diffractive optic. The dashed curve represents the theoretical diffraction-limited (DL) MTF, and the solid line shows the measured MTF obtained with 10 nm spectral bandwidth object illumination centered at 543 nm wavelength.

Fig. 5
Fig. 5

Effects of field-angle-dependent aberrations and aberration compensation for the extended field-of-regard mosaic image. The dashed lines of (a) depict a 5 × 5 mosaic image array in object space. The solid lines define the horizontal, vertical, and diagonal paths along which the system aberrations are analyzed. (b)–(d) Results of a Zemax ray-trace analysis for the residual system aberrations expressed as a Strehl ratio along the horizontal, vertical, and diagonal directions, respectively. The dashed curves show the residual aberration for the case where aberration compensation has been optimized for the 10° horizontal field angle only. The segmented curves show the residual aberration for the case where Zernike astigmatism coefficients Z 4 and Z 5 have been optimized for the field angles at the center of the instantaneous field of each image segment.

Fig. 6
Fig. 6

Mosaic of pupil plane optical-path functions rendered in gray scale. The optical path function shown at center compensates more than 40 waves of field-angle-dependent aberration. The surrounding pupil plane functions add wavefront tilt in integer multiples of the instantaneous field of view and optimize the compensating optical path function at the center of the instantaneous field.

Fig. 7
Fig. 7

Mosaic of image segments corresponding to the pupil plane functions shown in Fig. 6. The image segment at the center is acquired at a 10° horizontal off-axis angle with more than 40 waves of aberration compensated to near the diffraction limit. The surrounding image segments result from discrete amounts of wavefront tilt added to the pupil plane functions as shown in Fig. 6. The result is an expanded field-of-regard mosaic image acquired without mechanical wavefront steering or system slewing.

Fig. 8
Fig. 8

Measured and calculated diffraction efficiencies as a function of the number of cycles per millimeter of optical path tilt introduced by a modulo λ r linear tilt function. The circles represent the measured diffraction efficiencies achieved with the programmable diffractive optic, and the triangles represent the numerically calculated values including the effects of discrete element addressing, 70 % fill factor, and adjacent pixel influence.

Fig. 9
Fig. 9

Mosaic image comprised of a 13 × 13 array of image segments showing the effects of spatial aliasing that can result from undersampling of the modulo λ r optical path function by the discrete elements of the PDO.

Fig. 10
Fig. 10

Mosaic images of a 1951 Air Force resolution bar chart showing (a) an unprocessed image, (b) a mosaic image with the minimum pixel value subtracted to reduce background from nondiffracted/compensated light, (c) background-subtracted image with pixels scaled to the original maximum pixel value.

Fig. 11
Fig. 11

Mosaic images of a U.S. currency rendering of an American colonial scientist showing (a) an unprocessed mosaic image, (b) a mosaic image with the minimum pixel value subtracted to reduce the background from nondiffracted/compensated light, (c) a background-subtracted image with pixels scaled to the original maximum pixel value.

Fig. 12
Fig. 12

Mosaic images of a Space Imaging photograph of the Pentagon showing (a) an unprocessed mosaic image, (b) a mosaic image with the minimum pixel value subtracted to reduce the background from nondiffracted/compensated light, (c) a background-subtracted image with pixels scaled to the original maximum pixel value.

Tables (2)

Tables Icon

Table 1 Estimated Range of First-Order Diffraction Efficiencies Associated with Pupil Plane Functions Shown in Fig. 6

Tables Icon

Table 2 Calculated Peak-to-Valley Residual Aberration in Waves Associated with the Wavelength-Dependent Wavefront Error for Each Image Segment of the Mosaic Image in Fig. 7 a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

W ( ρ , θ ) = Z 4 ρ 2 cos 2 θ + Z 5 ρ 2 sin 2 θ + Z 6 ( 3 ρ 2 - 2 ) ρ × cos θ + Z 7 ( 3 ρ 2 - 2 ) ρ sin θ + Z 8 ( 6 ρ 4 - 6 ρ 2 + 1 ) ,
T ( ρ , θ , λ r , λ ) = exp [ i 2 π λ OPD ( ρ , θ ) mod λ r ] ,
T ( ρ , θ , λ r , λ ) = m = - sinc ( λ r λ - m ) × exp [ im 2 π λ r OPD ( ρ , θ ) ] ,
E in ( ρ , θ , λ ) = exp [ - i 2 π λ W ( ρ , θ ) ] .
OPD ( ρ , θ ) = W ( ρ , θ ) .
E out ( ρ , θ , λ r , λ ) = E in ( ρ , θ , λ ) T ( ρ , θ , λ r , λ ) .
E out ( ρ , θ , λ r , λ ) = m = - sinc ( λ r λ - m ) × exp [ - i 2 π λ Δ W m ( ρ , θ ) ] ,
Δ W m ( ρ , θ , λ r , λ ) = Δλ m λ r W ( ρ , θ )
Δ λ m = λ r - m λ
W p , q ( ρ , θ ) = Z 1 ρ cos θ + Z 2 ρ sin θ + W ( ρ , θ , p , q ) .
Z 1 = 45 p ,
Z 2 = 35 q ,
W p , q ( ρ , θ ) = 45 cos θ + 35 sin θ + Z 4 ρ 2 cos ( 2 θ ) ,
[ W p , q ( ρ , θ ) ] r = 45 p R cos θ + 35 q R sin θ + 2 Z 4 R ρ cos ( 2 θ ) .
[ W p , q ( ρ , θ ) ] θ = 45 p R sin θ + 35 q R cos θ - 2 Z 4 R ρ sin ( 2 θ ) .
| W p , q ( ρ , θ ) | = { [ 45 p R cos θ + 35 q R sin θ + 2 Z 4 R ρ  cos ( 2 θ ) ] 2 + [ - 45 p R sin θ + 35 q R cos θ - 2 Z 4 R ρ  sin ( 2 θ ) ] 2 } 1 / 2 .
Δ W p , q ( ρ , θ , λ r , λ ) = Δλ λ r W p , q ( ρ , θ ) ,
Δλ = λ r - λ
Δ W p , q p - v = Δ λ λ r W p , q p - v .

Metrics