Abstract

A frequency doubled Ti:sapphire laser of 400  nm wavelength, 160  fs pulse width, and 1 kHz repetition rate, combined with a high resolution computer-controlled X–Y stage, was used to direct write periodic structures on Si 100. Laser pulses of 130  nJ energy were focused using an objective lens of 0.65  NA. Laser micromachining yielded lines of 700  nm width and ablation depths of 600  nm. One- and two-dimensional periodic structures of 5 and 5×5  μm spacing were fabricated, and the structures were characterized by using optical and atomic force microscopy. The light diffraction characteristics of the periodic 1D and 2D patterns were examined. The diffraction properties of the 1D structures were highly dependent upon the light polarization orientation with respect to the micromachining direction.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
    [Crossref]
  2. J. Kruger and W. Kautek, "The femtosecond pulse laser: a new tool for micromachining," Laser Phys. 9, 30-40 (1999).
  3. Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
    [Crossref]
  4. X. Liu, "Ultrafast lasers as a versatile processing tool," in Proc. SPIE 3888, 198-209 (2000).
    [Crossref]
  5. K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
    [Crossref]
  6. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).
  7. S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).
  8. S. E. Lyshevshi, MEMS and NEMS System Devices and Structures(CRC, 2002).
  9. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
    [Crossref]
  10. C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
    [Crossref]
  11. B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).
  12. B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
    [Crossref]
  13. H. Chien and M. C. Gupta "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
    [Crossref]

2005 (1)

H. Chien and M. C. Gupta "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

2001 (3)

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

2000 (3)

X. Liu, "Ultrafast lasers as a versatile processing tool," in Proc. SPIE 3888, 198-209 (2000).
[Crossref]

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

1999 (2)

J. Kruger and W. Kautek, "The femtosecond pulse laser: a new tool for micromachining," Laser Phys. 9, 30-40 (1999).

Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
[Crossref]

1997 (2)

X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[Crossref]

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Adams, S.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Arnd, M.

Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
[Crossref]

Bardo, Ph.

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

Bernd, H.

Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
[Crossref]

Bonse, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

Chang, Y.

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Chao, C.

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Chen, C.

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Chichkov, B. N.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Chien, H.

H. Chien and M. C. Gupta "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[Crossref]

Dolgaev, S. I.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Du, D.

X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[Crossref]

Egbert, A.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Fallnich, C.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Furukawa, A.

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

Gupta, M. C.

H. Chien and M. C. Gupta "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[Crossref]

Jianxin, Z.

Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

J. Kruger and W. Kautek, "The femtosecond pulse laser: a new tool for micromachining," Laser Phys. 9, 30-40 (1999).

Koh, L. H. K.

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

Korte, F.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Kruger, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

J. Kruger and W. Kautek, "The femtosecond pulse laser: a new tool for micromachining," Laser Phys. 9, 30-40 (1999).

Lavrishev, S. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Lenzner, M.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

Lim, L. E. N.

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

Liu, C.

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Liu, X.

X. Liu, "Ultrafast lasers as a versatile processing tool," in Proc. SPIE 3888, 198-209 (2000).
[Crossref]

X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[Crossref]

Lyalin, A. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Lyshevshi, S. E.

S. E. Lyshevshi, MEMS and NEMS System Devices and Structures(CRC, 2002).

Mourrou, G.

X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[Crossref]

Ngoi, B. K. A.

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

Nolte, S.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Ostendorf, A.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Ruske, J. P.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Said, A. A.

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

Shafeev, G. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Shihoyama, K.

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

Sirnakin, A. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Tan, B.

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

Tunnermann, A.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Venkatakrishnan, K.

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

Voronov, V. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

Will, M.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Yang, C. C.

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

Appl. Phys. A (2)

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology," Appl. Phys. A 74, 19-25 (2002).
[Crossref]

H. Chien and M. C. Gupta "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[Crossref]

Appl. Phys. Lett. (1)

C. Chao, C. Chen, C. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon with high coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourrou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[Crossref]

J. Laser Appl. (1)

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, and B. Tan, "Submicron micromachining on silicon wafer using femtosecond pulse laser" J. Laser Appl. 13, 41-43 (2001).

Laser Phys. (1)

J. Kruger and W. Kautek, "The femtosecond pulse laser: a new tool for micromachining," Laser Phys. 9, 30-40 (1999).

Opt. Exp. (1)

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tunnermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Exp. 7, 41-49 (2000).

Opt. Lasers Eng. (1)

B. K. A. Ngoi, K. Venkatakrishnan, L. E. N. Lim, B. Tan, and L. H. K. Koh, "Effect of energy above laser induced damage thresholds in the micromachining of silicon by femtosecond pulse laser," Opt. Lasers Eng. 35, 361-369 (2001).
[Crossref]

Proc. SPIE (3)

Z. Jianxin, H. Bernd, and M. Arnd, "Micromachining with ultrashort laser pulses," in Proc. SPIE 3618, 114-121 (1999).
[Crossref]

X. Liu, "Ultrafast lasers as a versatile processing tool," in Proc. SPIE 3888, 198-209 (2000).
[Crossref]

K. Shihoyama, A. Furukawa, Ph. Bardo, and A. A. Said, "Micromachining with ultrafast lasers," in Proc. SPIE 4088, 140-143 (2000).
[Crossref]

Other (2)

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Sirnakin, V. V. Voronov, and G. A. Shafeev, "Formation of conical microstructures upon laser evaporation of solids," Appl. Phys. A 73, 177-181 (2001).

S. E. Lyshevshi, MEMS and NEMS System Devices and Structures(CRC, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Experimental setup.

Fig. 2
Fig. 2

Variation of the linewidth with incident laser power.

Fig. 3
Fig. 3

(Color online) Optical microscope photograph of micromachined samples (a) in air at atmospheric pressure and (b) under 20   Torr of He as an assist gas. Laser energy density was 0.22 J / cm 2 .

Fig. 4
Fig. 4

(Color online) AFM photograph of a micromachined sample. Laser polarization was parallel to scan direction.

Fig. 5
Fig. 5

(Color online) AFM photograph of a micromachined sample. Laser polarization was perpendicular to scan direction.

Fig. 6
Fig. 6

(Color online) AFM photograph of a micromachined double periodic structure of 5   μm period.

Fig. 7
Fig. 7

(Color online) Diffraction pattern obtained from a 5 μm periodic structure machined in a parallel direction to the laser polarization.

Fig. 8
Fig. 8

(Color online) Diffraction pattern obtained from a 5   μm micromachined periodic structure. Laser polarization was perpendicular to scan direction.

Fig. 9
Fig. 9

(Color online) Diffraction pattern of a micromachined double periodic structure. Laser energy density was 0.26 J / cm 2 .

Fig. 10
Fig. 10

(Color online) Effect of laser power on micromachining quality and corresponding diffraction pattern. The laser energy density was (a) 0.22 J / cm 2 , (b) 0.3 J / cm 2 , (c) 0.6 J / cm 2 , and (d) 1.2 J / cm 2 . The laser polarization was perpendicular to scan direction.

Fig. 11
Fig. 11

(Color online) Micromachining schemes and the corresponding diffraction pattern. (a) Laser scanning along one direction. (b) Laser scanning with alternating directions.

Fig. 12
Fig. 12

AFM micrograph of a single shot ablation on silicon. The laser energy density was 0.75 J / cm 2 . The large ripples have a period along the perpendicular to the laser polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ m n = tan 1 ( λ m 2 d 1     2 m 2 λ 2 + n 2 d 2     2 n 2 λ 2 ) ,

Metrics