Abstract

The presence of atmospheric refractive turbulence makes it necessary to use simulations of beam propagation to examine the uncertainty added to the differential absorption lidar (DIAL) measurement process of a practical heterodyne lidar. The inherent statistic uncertainty of coherent return fluctuations in ground lidar systems profiling the atmosphere along slant paths with large elevation angles translates into a lessening of accuracy and sensitivity of any practical DIAL measurement. This technique opens the door to consider realistic, nonuniform atmospheric conditions for any DIAL instrument configuration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Belmonte and B. J. Rye, "Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems," Appl. Opt. 39, 2401-2411 (2000).
    [CrossRef]
  2. A. Belmonte, "Coherent power measurement uncertainty resulting from atmospheric turbulence," Opt. Express 12, 168-175 (2004).
    [CrossRef] [PubMed]
  3. J. Martin, "Simulation of wave propagation in random media: theory and applications," in Wave Propagation in Random Media(Scintillation),V.I.Tatarskii, A.Ishimaru, and V.Zavorotny, eds. (SPIE, 1993).
  4. A. Belmonte, "Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance," Appl. Opt. 39, 5426-5445 (2000).
    [CrossRef]
  5. A. Belmonte, "Coherent return turbulent fluctuations in ground lidar systems profiling along slant paths," Opt. Express 13, 9598-9604 (2005).
    [CrossRef] [PubMed]
  6. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, 1984).
  7. B. J. Rye, "Antenna parameters for incoherent backscatter heterodyne lidar," Appl. Opt. 18, 1390-1398 (1979).
    [CrossRef] [PubMed]
  8. R. G. Frehlich and M. J. Kavaya, "Coherent laser radar performance for general atmospheric refractive turbulence," Appl. Opt. 30, 5325-5352 (1991).
    [CrossRef] [PubMed]
  9. M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, 1994).
  10. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, and R. G. Frehlich, "Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling," Appl. Opt. 28, 840-851 (1989).
    [CrossRef] [PubMed]
  11. R. M. Hardesty, "Coherent DIAL measurement of range-resolved water vapor concentration," Appl. Opt. 23, 2545-2553 (1984).
    [CrossRef] [PubMed]
  12. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, "Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide," Appl. Opt. 39, 3664-3669 (2000).
    [CrossRef]
  13. B. J. Rye, "Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns," J. Opt. Soc. Am. 71, 687-691 (1981).
    [CrossRef]
  14. A. Belmonte, "Coherent DIAL profiling in turbulent atmosphere," Opt. Express 12, 1249-1257 (2004).
    [CrossRef] [PubMed]
  15. L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere," J. Mod. Opt. 39, 1849-1853 (1992).
    [CrossRef]
  16. B. J. Rye and R. G. Frehlich, "Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target," Appl. Opt. 31, 2891-2899 (1992).
    [CrossRef] [PubMed]
  17. R. R. Beland, "Propagation through atmospheric optical turbulence," in The Infrared and ElectroOptical Systems Handbook, F.G.Smith, ed. (SPIE, 1993), Vol. 2, Chap. 2.
  18. R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

2005 (1)

2004 (2)

2000 (3)

1992 (2)

B. J. Rye and R. G. Frehlich, "Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target," Appl. Opt. 31, 2891-2899 (1992).
[CrossRef] [PubMed]

L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere," J. Mod. Opt. 39, 1849-1853 (1992).
[CrossRef]

1991 (1)

1989 (1)

1984 (1)

1981 (1)

1979 (1)

Andrews, L. C.

L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere," J. Mod. Opt. 39, 1849-1853 (1992).
[CrossRef]

Beland, R. R.

R. R. Beland, "Propagation through atmospheric optical turbulence," in The Infrared and ElectroOptical Systems Handbook, F.G.Smith, ed. (SPIE, 1993), Vol. 2, Chap. 2.

Belmonte, A.

Clough, S. A.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Dharamsi, A. N.

Fenn, R. W.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Fitzgerald, C. M.

Frehlich, R. G.

Gallery, W. O.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Good, R. E.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Hardesty, R. M.

Henderson, S. W.

Huffaker, R. M.

Kavaya, M. J.

Kendall, M. G.

M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, 1994).

Kneizys, F. X.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Koch, G. J.

Martin, J.

J. Martin, "Simulation of wave propagation in random media: theory and applications," in Wave Propagation in Random Media(Scintillation),V.I.Tatarskii, A.Ishimaru, and V.Zavorotny, eds. (SPIE, 1993).

McCarthy, J. C.

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, 1984).

Mill, J. D.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Rothman, L. S.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Russell, E. C.

Rye, B. J.

Shettle, E. P.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

Stuart, A.

M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, 1994).

Appl. Opt. (8)

J. Mod. Opt. (1)

L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere," J. Mod. Opt. 39, 1849-1853 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Other (5)

R. R. Beland, "Propagation through atmospheric optical turbulence," in The Infrared and ElectroOptical Systems Handbook, F.G.Smith, ed. (SPIE, 1993), Vol. 2, Chap. 2.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, and E. P. Shettle, "Optical and infrared properties of the atmosphere," in The Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. (Air Force Geophysics Laboratory, 1985), Chap. 18.

J. Martin, "Simulation of wave propagation in random media: theory and applications," in Wave Propagation in Random Media(Scintillation),V.I.Tatarskii, A.Ishimaru, and V.Zavorotny, eds. (SPIE, 1993).

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, 1984).

M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Turbulence-induced DIAL measurement uncertainty in the measurement of H 2 O concentration as a function of altitude h for a 2 μm wavelength, 16 cm aperture, monostatic lidar system. The laser lines for range-resolved coherent DIAL remote sensing considered here are λ on = 2.0988 μm and λ off = 2.0989 μm (Ref. 10). The H–V C n 2 ( h ) profile model with different moderate-to-strong near-ground refractive turbulence C n 0 2 conditions is considered. We used the AFGL U.S. Standard atmosphere model for temperature, pressure, and H 2 O vapor content. The standard deviations are shown for several vertical and slant propagation paths and a range resolution Δ R of 300 m .

Fig. 2
Fig. 2

(Color online) Similar to Fig. 1 but for a 10 μm monostatic lidar ( λ on = 10.247 μm and λ off = 10.264 μm ) (Ref. 11). Again, the measurement error of H 2 O concentration is shown for several vertical and slant paths and a range resolution Δ R of 300 m .

Fig. 3
Fig. 3

(Color online) Turbulence-induced DIAL measurement uncertainty in the measurement of H 2 O concentration as a function of altitude h for a 2 μm wavelength ( λ on = 2.0988 μm and λ off = 2.0989 μm ) (Ref. 10), 16 cm aperture, monostatic lidar system. Once again, we use the H–V C n 2 ( h ) profile model and the AFGL U.S. Standard atmosphere. Standard deviations are shown for several range resolutions Δ R and an elevation angle θ of 60°.

Fig. 4
Fig. 4

(Color online) Turbulence-induced DIAL measurement uncertainty in the measurement of CO 2 centration as a function of altitude h for a 2 μm wavelength 16 cm aperture, monostatic lidar system. Here, λ on = 2.0530 μm and λ off = 2.0490 μm (Ref. 12). Once again, we use the H–V C n 2 ( h ) profile model and the AFGL U.S. Standard atmosphere for temperature, pressure, and CO2 content. Standard deviations are shown for several vertical and slant propagation paths (top) and different range resolutions Δ R (bottom).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ ( R , Δ R ) = 1 2 K Δ R ln [ δ P ( R , Δ R ) ] ,
δ P ( R , Δ R ) = P on ( R - Δ R / 2 ) P off ( R + Δ R / 2 ) P on ( R + Δ R / 2 ) P off ( R - Δ R / 2 ) .
P ( R , t ) = C exp [ - 2 R α ( R ) ] β ( R ) Ω COH ( R , t ) ,
σ ρ 2 ( R ) = 1 4 K 2 ρ ¯ 2 ( Δ R ) 2 σ δ P 2 ( R , Δ R ) ,

Metrics