Abstract

To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
    [CrossRef]
  2. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
    [CrossRef]
  3. M. Nagorni and S. W. Hell, "Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts," J. Opt. Soc. Am. A 18, 36-48 (2001).
  4. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, "Optical transfer functions of 4Pi confocal microscopes: theory and experiment," Opt. Lett. 22, 436-438 (1997).
  5. M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
    [CrossRef]
  6. A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
    [CrossRef]
  7. M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).
  8. S. W. Hell, C. M. Blanca, and J. Bewersdorf, "Phase determination in interference-based superresolving microscopes through critical frequency analysis," Opt. Lett. 27, 888-890 (2002).
  9. C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
    [CrossRef]
  10. W. H. Richardson, "Bayesian-based iterative method of image restoration," J. Opt. Soc. Am. 62, 55-59 (1972).
  11. S. M. Tan, "Aperture synthesis mapping and parameter estimation," Ph.D. dissertation (Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge, 1987).
  12. S. M. Tan, C. Fox, and G. K. Nicholls, "Physics 707 Inverse Problems (Course Notes)," http://www.math.auckland.ac.nz/∼phy707/.
  13. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).
  14. R. Heintzmann, "Resolution Enhancement of Biological Light Microscopic Data," Ph.D. dissertation (University of Heidelberg 1999).
  15. C. Stockklausner and N. Klöcker, "Surface expression of inward rectifier potassium channels is controlled by selective Golgi export," J. Biol. Chem. 278, 17000-17005 (2003).
    [CrossRef]

2003 (1)

C. Stockklausner and N. Klöcker, "Surface expression of inward rectifier potassium channels is controlled by selective Golgi export," J. Biol. Chem. 278, 17000-17005 (2003).
[CrossRef]

2002 (2)

S. W. Hell, C. M. Blanca, and J. Bewersdorf, "Phase determination in interference-based superresolving microscopes through critical frequency analysis," Opt. Lett. 27, 888-890 (2002).

C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
[CrossRef]

2001 (1)

1998 (3)

M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
[CrossRef]

A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

1997 (1)

1995 (1)

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

1994 (1)

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

1972 (1)

Bahlmann, K.

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

Barrett, R.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Berry, M.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Bewersdorf, J.

S. W. Hell, C. M. Blanca, and J. Bewersdorf, "Phase determination in interference-based superresolving microscopes through critical frequency analysis," Opt. Lett. 27, 888-890 (2002).

C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
[CrossRef]

Blanca, C. M.

C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
[CrossRef]

S. W. Hell, C. M. Blanca, and J. Bewersdorf, "Phase determination in interference-based superresolving microscopes through critical frequency analysis," Opt. Lett. 27, 888-890 (2002).

Chan, T. F.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Cremer, C.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

Demmel, J.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

der Vorst, H. V.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Donato, J.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Dongarra, J.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Egner, A.

A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
[CrossRef]

Eijkhout, V.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Fox, C.

S. M. Tan, C. Fox, and G. K. Nicholls, "Physics 707 Inverse Problems (Course Notes)," http://www.math.auckland.ac.nz/∼phy707/.

Giese, G.

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

Hänninen, P. E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

Heintzmann, R.

R. Heintzmann, "Resolution Enhancement of Biological Light Microscopic Data," Ph.D. dissertation (University of Heidelberg 1999).

Hell, S. W.

S. W. Hell, C. M. Blanca, and J. Bewersdorf, "Phase determination in interference-based superresolving microscopes through critical frequency analysis," Opt. Lett. 27, 888-890 (2002).

C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
[CrossRef]

M. Nagorni and S. W. Hell, "Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts," J. Opt. Soc. Am. A 18, 36-48 (2001).

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
[CrossRef]

M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
[CrossRef]

M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, "Optical transfer functions of 4Pi confocal microscopes: theory and experiment," Opt. Lett. 22, 436-438 (1997).

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

Klöcker, N.

C. Stockklausner and N. Klöcker, "Surface expression of inward rectifier potassium channels is controlled by selective Golgi export," J. Biol. Chem. 278, 17000-17005 (2003).
[CrossRef]

Kozubek, M.

Lindek, S.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

Nagorni, M.

Nicholls, G. K.

S. M. Tan, C. Fox, and G. K. Nicholls, "Physics 707 Inverse Problems (Course Notes)," http://www.math.auckland.ac.nz/∼phy707/.

Pozo, R.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Richardson, W. H.

Romine, C.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

Salo, J.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

Schrader, M.

M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
[CrossRef]

A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, "Optical transfer functions of 4Pi confocal microscopes: theory and experiment," Opt. Lett. 22, 436-438 (1997).

Soini, E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

Stelzer, E. H. K.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

Stockklausner, C.

C. Stockklausner and N. Klöcker, "Surface expression of inward rectifier potassium channels is controlled by selective Golgi export," J. Biol. Chem. 278, 17000-17005 (2003).
[CrossRef]

Tan, S. M.

S. M. Tan, "Aperture synthesis mapping and parameter estimation," Ph.D. dissertation (Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge, 1987).

S. M. Tan, C. Fox, and G. K. Nicholls, "Physics 707 Inverse Problems (Course Notes)," http://www.math.auckland.ac.nz/∼phy707/.

van der Voort, H. T. M.

M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
[CrossRef]

Wilson, T.

Appl. Phys. Lett. (2)

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
[CrossRef]

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, "Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research," Appl. Phys. Lett. 66, 1698-1700 (1995).
[CrossRef]

Biophys. J. (1)

M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-Confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998).

J. Appl. Phys. (1)

M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998).
[CrossRef]

J. Biol. Chem. (1)

C. Stockklausner and N. Klöcker, "Surface expression of inward rectifier potassium channels is controlled by selective Golgi export," J. Biol. Chem. 278, 17000-17005 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton, and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998).
[CrossRef]

C. M. Blanca, J. Bewersdorf, and S. W. Hell, "Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity," Opt. Commun. 206, 281-285 (2002).
[CrossRef]

Opt. Lett. (2)

Other (4)

S. M. Tan, "Aperture synthesis mapping and parameter estimation," Ph.D. dissertation (Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge, 1987).

S. M. Tan, C. Fox, and G. K. Nicholls, "Physics 707 Inverse Problems (Course Notes)," http://www.math.auckland.ac.nz/∼phy707/.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

R. Heintzmann, "Resolution Enhancement of Biological Light Microscopic Data," Ph.D. dissertation (University of Heidelberg 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics