Abstract

Amplified spontaneous emission (ASE) suppression techniques were utilized to fabricate a double-pass, Yb-doped amplifier with the noise properties of a single-pass amplifier. Simulations based on a rate equation model were used to analyze the ASE and the effectiveness of the suppression techniques. These techniques were implemented in an alignment-free, double-pass, Yb-doped fiber amplifier with a 26  dB gain at a wavelength 23  nm off the gain peak and a 48  dB noise floor while amplifying linearly polarized optical pulses with a low-duty cycle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  2. S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
    [CrossRef]
  3. A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann, and D. Harter, "Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems," Opt. Lett. 26, 935-937 (2001).
    [CrossRef]
  4. S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
    [CrossRef]
  5. M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
    [CrossRef]
  6. L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
    [CrossRef]
  7. Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
    [CrossRef]
  8. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  9. R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
    [CrossRef]
  10. N. A. Brilliant, R. J. Beach, A. D. Drobshoff, and S. A. Payne, "Narrow-line ytterbium fiber master-oscillator power amplifier," J. Opt. Soc. Am. B 19, 981-991 (2002).
    [CrossRef]
  11. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  12. S. Faralli and F. Di Pasquale, "Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes," IEEE Photon. Technol. Lett. 15, 804-806 (2003).
    [CrossRef]
  13. S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
    [CrossRef]
  14. M. Tang, P. Shum, and Y. D. Gong, "Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering," Opt. Express 11, 1887-1893 (2003).
    [CrossRef] [PubMed]
  15. J. Bromage, P. J. Winzer, and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications: 2, Subsystems and Systems, M. N. Islam, ed., Springer Series in Optical Science (Springer, 2004), Chap. 15.
  16. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 1995).

2004 (2)

M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
[CrossRef]

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

2003 (4)

S. Faralli and F. Di Pasquale, "Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes," IEEE Photon. Technol. Lett. 15, 804-806 (2003).
[CrossRef]

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

M. Tang, P. Shum, and Y. D. Gong, "Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering," Opt. Express 11, 1887-1893 (2003).
[CrossRef] [PubMed]

Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
[CrossRef]

2002 (2)

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

N. A. Brilliant, R. J. Beach, A. D. Drobshoff, and S. A. Payne, "Narrow-line ytterbium fiber master-oscillator power amplifier," J. Opt. Soc. Am. B 19, 981-991 (2002).
[CrossRef]

2001 (2)

A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann, and D. Harter, "Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems," Opt. Lett. 26, 935-937 (2001).
[CrossRef]

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 1995).

Ahmad, H.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

Beach, R. J.

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Brilliant, N. A.

Bromage, J.

J. Bromage, P. J. Winzer, and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications: 2, Subsystems and Systems, M. N. Islam, ed., Springer Series in Optical Science (Springer, 2004), Chap. 15.

Cho, G. C.

Cho, K.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

Di Pasquale, F.

S. Faralli and F. Di Pasquale, "Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes," IEEE Photon. Technol. Lett. 15, 804-806 (2003).
[CrossRef]

Drobshoff, A. D.

Essiambre, R.-J.

J. Bromage, P. J. Winzer, and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications: 2, Subsystems and Systems, M. N. Islam, ed., Springer Series in Optical Science (Springer, 2004), Chap. 15.

Faralli, S.

S. Faralli and F. Di Pasquale, "Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes," IEEE Photon. Technol. Lett. 15, 804-806 (2003).
[CrossRef]

Fermann, M. E.

Galvanauskas, A.

Gong, Y. D.

M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
[CrossRef]

M. Tang, P. Shum, and Y. D. Gong, "Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering," Opt. Express 11, 1887-1893 (2003).
[CrossRef] [PubMed]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Hariharan, A.

Harter, D.

Harun, S. W.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

Hwang, S.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Ji, J. H.

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

Koh, J.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Kwon, H. J.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Oh, Y. J.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Payne, S. A.

Po, H.

Poopalan, P.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

Shum, P.

M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
[CrossRef]

M. Tang, P. Shum, and Y. D. Gong, "Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering," Opt. Express 11, 1887-1893 (2003).
[CrossRef] [PubMed]

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Song, K. W.

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

Tamchek, N.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

Tang, M.

M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
[CrossRef]

M. Tang, P. Shum, and Y. D. Gong, "Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering," Opt. Express 11, 1887-1893 (2003).
[CrossRef] [PubMed]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Wang, Y.

Winzer, P. J.

J. Bromage, P. J. Winzer, and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications: 2, Subsystems and Systems, M. N. Islam, ed., Springer Series in Optical Science (Springer, 2004), Chap. 15.

Xia, Y. X.

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

Ye, Q. H.

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

Yi, L. L.

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

Zhan, L.

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

M. Tang, Y. D. Gong, and P. Shum, "Dynamic properties of double-pass discrete Raman amplifier with FBG-based all-optical gain clamping techniques," IEEE Photon. Technol. Lett. 16, 768-770 (2004).
[CrossRef]

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

S. Faralli and F. Di Pasquale, "Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes," IEEE Photon. Technol. Lett. 15, 804-806 (2003).
[CrossRef]

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, "Double-pass L-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
[CrossRef]

S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, "Broad-band erbium-doped fiber amplifier with double-pass configuration," IEEE Photon. Technol. Lett. 13, 1289-1291 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Other (4)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

J. Bromage, P. J. Winzer, and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications: 2, Subsystems and Systems, M. N. Islam, ed., Springer Series in Optical Science (Springer, 2004), Chap. 15.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 1995).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Total (spectrally integrated) forward (solid curve) and reverse (dashed curve) ASE, 976   nm pump leakage, and 1053   nm small-signal gain as a function of pump power for a 3.5   m length of Yb:fiber.

Fig. 2
Fig. 2

Depiction of modeled configurations: (a) single pass, (b) double pass, (c) double pass with an intracavity bandpass filter, and (d) same as (c) with a WDM filter at the amplifier output.

Fig. 3
Fig. 3

Total (spectrally integrated) ASE power at the amplifier output as a function of pump power for the configurations shown in Fig. 2 using the fiber from Fig. 1.

Fig. 4
Fig. 4

Amplified spontaneous emission spectra at the amplifier output for the configurations shown in Fig. 2 using the fiber from Fig. 1 with 250   mW of pump power.

Fig. 5
Fig. 5

Schematic of a high-gain double-pass amplifier consisting of input and output isolators, a PBS, an ASE–signal wavelength division multiplexer (WDM1), two pump–signal wavelength division multiplexers (WDM2), 3.6   m of Yb-doped fiber, a Faraday mirror, and a 90∕10 splitter. The Faraday mirror was a factory-aligned package containing a lens (L), a Faraday rotator (FR), a bandpass filter (F), and a mirror (M). The PM fiber is notated by dotted curves, while the SM fiber is notated by solid curves.

Fig. 6
Fig. 6

Gain, output energy, and ASE power of the experimental amplifier described in Fig. 5 as a function of pump current.

Fig. 7
Fig. 7

Amplified spontaneous emission spectra from a dual-pass fiber amplifier for various pumping levels. Also shown are the seed wavelength at 1053   nm and the ASE trace for the amplifier without the 1030   nm / 1053   nm WDM, which has been offset for clarity.

Tables (3)

Tables Icon

Table 1 Gaussian Coefficients for Yb Emission and Absorption Cross Sections

Tables Icon

Table 2 Parameters Used in Simulations

Tables Icon

Table 3 Comparison of Measured and Simulated Values for the Double-Pass Fiber Amplifier

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

± P ± z + 1 v g P ± t = Γ [ σ e N 2 σ a N 1 ] P ± α P ± + 2 σ e N 2 h c λ 3 Δ λ + S α RS P ,
N 2 t = 1 h c Γ A [ σ e N 2 σ a N 1 ] × ( P + + P ) d λ N 2 τ ,
NF = 2 P ASE h ν Δ ν opt G ,
P DRS ( L ) P S ( L ) = 0 L d z 2 0 z 2 d z 1 ( S α RS ) 2 G ( z 1 , z 2 ) G ( z 1 , z 2 ) ,
P DRS ( L ) P S ( L ) = R 2 S α RS L / 2 L d z 2 e g ( z 2 L / 2 ) = R 2 S α RS 2 g ( G DP G DP ) ,

Metrics