Abstract

A phase geographical map for determining a right-angle prism is presented. The proposed method is based on total-internal-reflection effects and chromatic dispersion. Under the total-internal-reflection condition, the phase difference between the S and P polarizations, as a function of the wavelength and refractive index, can be extracted and measured using heterodyne interferometry. Various wavelengths correspond to various refractive index values. The proposed map is convenient in ensuring the prism material using a specific V number. The method has the following merits: high stability, ease of operation, and rapid measurement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Hunter, "Error in using the reflectance vs angle of incidence method for measuring optical constants," J. Opt. Soc. Am. 55, 1197-1204 (1965).
  2. R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
    [CrossRef]
  3. P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
    [CrossRef]
  4. P. P. Herrmann, "Determination of thickness, refractive index, and dispersion of wave guiding thin films with an Abbe refractometer," Appl. Opt. 19, 3262-3262 (1980).
  5. P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986).
    [CrossRef]
  6. G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995).
    [CrossRef]
  7. A. C. Traub and H. Osterberb, "Brewster angle apparatus for thin film index measurement," J. Opt. Soc. Am. 47, 62-69 (1957).
  8. S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," in Proceedings of the Physical Society LXXVII (1960), Vol. 5, pp. 949-957.
  9. T. E. Darcie and M. S. Whalen, "Determination of optical constants using pseudo-Brewster angle and normal incidence reflectance measurements," Appl. Opt. 23, 1130-1131 (1984).
  10. M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992).
    [CrossRef]
  11. R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).
  12. H. Ringneault, F. Flory, and S. Monneret, "Nonlinear totally reflection prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films," Appl. Opt. 34, 4358-4369 (1995).
  13. S. T. Kirsch, "Determining the refractive index and thickness of thin films from prism coupler measurements," Appl. Opt. 20, 2085-2089 (1981).
  14. T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
    [CrossRef]
  15. P. S. Hauge, "Generalized rotating-compensator ellipsometry," Surf. Sci. 56, 148-160 (1976).
    [CrossRef]
  16. O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976).
    [CrossRef]
  17. R. M. A. Azzam, "A perspective on ellipsometry," Surf. Sci. 56, 6-18 (1976).
    [CrossRef]
  18. R. H. Muller, "Present status of automatic ellipsometers," Surf. Sci. 56, 19-36 (1976).
    [CrossRef]
  19. G. E. Jellison and B. C. Sales, "Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry," Appl. Opt. 30, 4310-4315 (1991).
  20. U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
    [CrossRef]
  21. N. J. Harrick, "Determination of refractive index and film thickness from interference fringes," Appl. Opt. 10, 2344-2349 (1971).
  22. A. M. Goodman, "Optical interference method for the approximate determination of refractive index and thickness of a transparent layer," Appl. Opt. 17, 2779-2787 (1978).
  23. M. Abraham, "Refractive index and thickness determination of transparent films: an interference method," Thin Solid Films 109, 93-102 (1983).
    [CrossRef]
  24. R. Swanepoel, "Determining refractive index and thickness of thin films from wavelength measurements only," J. Opt. Soc. Am. A 2, 1339-1343 (1985).
  25. O. Kafri, K. M. Kreske, and E. Keren, "Refractive index measurement of optical windows by an interferometric-deflectometric method," Appl. Opt. 27, 4602-4603 (1988).
  26. S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
    [CrossRef]
  27. D. Tentori, "High-precision refractometry by hologram interferometry," Opt. Eng. 31, 805-808 (1992).
    [CrossRef]
  28. I. Glatt and A. Livnat, "Determination of the refractive index of a lens using moiré deflectometry," Appl. Opt. 23, 2241-2243 (1984).
  29. M. H. Chiu, J. Y. Lee, and D. C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).
  30. D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998).
    [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 50-52.
  32. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 175-178.
  33. D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
    [CrossRef]

1998

D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998).
[CrossRef]

1997

1996

D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
[CrossRef]

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

1995

G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

H. Ringneault, F. Flory, and S. Monneret, "Nonlinear totally reflection prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films," Appl. Opt. 34, 4358-4369 (1995).

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

1992

D. Tentori, "High-precision refractometry by hologram interferometry," Opt. Eng. 31, 805-808 (1992).
[CrossRef]

U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
[CrossRef]

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992).
[CrossRef]

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

1991

1988

1986

P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986).
[CrossRef]

1985

1984

1983

M. Abraham, "Refractive index and thickness determination of transparent films: an interference method," Thin Solid Films 109, 93-102 (1983).
[CrossRef]

1981

1980

1978

1976

P. S. Hauge, "Generalized rotating-compensator ellipsometry," Surf. Sci. 56, 148-160 (1976).
[CrossRef]

O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976).
[CrossRef]

R. M. A. Azzam, "A perspective on ellipsometry," Surf. Sci. 56, 6-18 (1976).
[CrossRef]

R. H. Muller, "Present status of automatic ellipsometers," Surf. Sci. 56, 19-36 (1976).
[CrossRef]

1973

1971

1970

R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
[CrossRef]

1965

1957

Abraham, M.

M. Abraham, "Refractive index and thickness determination of transparent films: an interference method," Thin Solid Films 109, 93-102 (1983).
[CrossRef]

Akimoto, M.

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992).
[CrossRef]

Apostol, D.

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, "A perspective on ellipsometry," Surf. Sci. 56, 6-18 (1976).
[CrossRef]

Beak, U.

U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 50-52.

Chen, C. D.

D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
[CrossRef]

Chiu, M. H.

D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998).
[CrossRef]

M. H. Chiu, J. Y. Lee, and D. C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).

D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
[CrossRef]

Damian, V.

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

Darcie, T. E.

Ferraro, P.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

Finizio, A.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

Flory, F.

Gekka, Y.

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992).
[CrossRef]

Glatt, I.

Goodman, A. M.

Harrick, N. J.

Hashimoto, T.

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

Hauge, P. S.

P. S. Hauge, "Generalized rotating-compensator ellipsometry," Surf. Sci. 56, 148-160 (1976).
[CrossRef]

Herrmann, P. P.

Humphreys-Owen, S. P. F.

S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," in Proceedings of the Physical Society LXXVII (1960), Vol. 5, pp. 949-957.

Hunderi, O.

O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976).
[CrossRef]

Hunter, W. R.

Jarvis, P. R.

P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986).
[CrossRef]

Jellison, G. E.

Julien, L. S.

R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
[CrossRef]

Kafri, O.

Keren, E.

Kirsch, S. T.

Kreske, K. M.

Lee, J. Y.

Livnat, A.

Logofatu, P. C.

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

Matsuzaki, H.

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

Meeten, G. H.

G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986).
[CrossRef]

Miller, R. F.

R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
[CrossRef]

Monneret, S.

Muller, R. H.

R. H. Muller, "Present status of automatic ellipsometers," Surf. Sci. 56, 19-36 (1976).
[CrossRef]

Nicola, S. D.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

North, A. N.

G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

Osterberb, H.

Pesce, G.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

Pierattini, G.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

Reiners, G.

U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
[CrossRef]

Ringneault, H.

Ryberg, R.

O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976).
[CrossRef]

Sales, B. C.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 175-178.

Su, D. C.

D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998).
[CrossRef]

M. H. Chiu, J. Y. Lee, and D. C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).

D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
[CrossRef]

Swanepoel, R.

Taylor, A. J.

R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
[CrossRef]

Tentori, D.

D. Tentori, "High-precision refractometry by hologram interferometry," Opt. Eng. 31, 805-808 (1992).
[CrossRef]

Torge, R.

Traub, A. C.

Tsuchida, H.

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

Tumbar, R.

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

Ulrich, R.

Urban, I.

U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
[CrossRef]

Whalen, M. S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 50-52.

Yamamoto, K.

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

Appl. Opt.

P. P. Herrmann, "Determination of thickness, refractive index, and dispersion of wave guiding thin films with an Abbe refractometer," Appl. Opt. 19, 3262-3262 (1980).

T. E. Darcie and M. S. Whalen, "Determination of optical constants using pseudo-Brewster angle and normal incidence reflectance measurements," Appl. Opt. 23, 1130-1131 (1984).

R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).

H. Ringneault, F. Flory, and S. Monneret, "Nonlinear totally reflection prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films," Appl. Opt. 34, 4358-4369 (1995).

S. T. Kirsch, "Determining the refractive index and thickness of thin films from prism coupler measurements," Appl. Opt. 20, 2085-2089 (1981).

G. E. Jellison and B. C. Sales, "Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry," Appl. Opt. 30, 4310-4315 (1991).

N. J. Harrick, "Determination of refractive index and film thickness from interference fringes," Appl. Opt. 10, 2344-2349 (1971).

A. M. Goodman, "Optical interference method for the approximate determination of refractive index and thickness of a transparent layer," Appl. Opt. 17, 2779-2787 (1978).

I. Glatt and A. Livnat, "Determination of the refractive index of a lens using moiré deflectometry," Appl. Opt. 23, 2241-2243 (1984).

M. H. Chiu, J. Y. Lee, and D. C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).

O. Kafri, K. M. Kreske, and E. Keren, "Refractive index measurement of optical windows by an interferometric-deflectometric method," Appl. Opt. 27, 4602-4603 (1988).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. D

R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970).
[CrossRef]

J. Phys. E

P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986).
[CrossRef]

Jpn. J. Appl. Phys.

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992).
[CrossRef]

T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992).
[CrossRef]

Meas. Sci. Technol.

G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996).
[CrossRef]

Opt. Commun.

S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995).
[CrossRef]

Opt. Eng.

D. Tentori, "High-precision refractometry by hologram interferometry," Opt. Eng. 31, 805-808 (1992).
[CrossRef]

D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998).
[CrossRef]

Prec. Eng.

D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996).
[CrossRef]

Surf. Sci.

P. S. Hauge, "Generalized rotating-compensator ellipsometry," Surf. Sci. 56, 148-160 (1976).
[CrossRef]

O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976).
[CrossRef]

R. M. A. Azzam, "A perspective on ellipsometry," Surf. Sci. 56, 6-18 (1976).
[CrossRef]

R. H. Muller, "Present status of automatic ellipsometers," Surf. Sci. 56, 19-36 (1976).
[CrossRef]

Thin Solid Films

M. Abraham, "Refractive index and thickness determination of transparent films: an interference method," Thin Solid Films 109, 93-102 (1983).
[CrossRef]

U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 50-52.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 175-178.

S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," in Proceedings of the Physical Society LXXVII (1960), Vol. 5, pp. 949-957.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Total internal reflection inside a right-angle prism.

Fig. 2
Fig. 2

ϕ 532 versus V′.

Fig. 3
Fig. 3

Experimental system configuration.

Fig. 4
Fig. 4

ϕ versus n for θ 1 = 45 ° .

Fig. 5
Fig. 5

Error of refractive index versus n for Δ ϕ = 0.01 ° .

Tables (1)

Tables Icon

Table 1 Experimental Results Compared with Theoretical Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ 1 = 45 ° + sin - 1 ( sin θ i / n ) .
ϕ = δ s δ p = 2 tan 1 { [ sin 2 θ 1 ( 1 / n ) 2 ] 0.5 / ( tan   θ 1   sin   θ 1 ) } ,
ϕ = 2 tan 1 [ ( 1 2 / n 2 ) 0.5 ] .
n 2 ( λ ) = A 0 + A 1 λ 2 + A 2 λ 2 + A 3 λ 4 + A 4 λ 6 + A 5 λ 8 ,
V = ϕ 532 ϕ 488 ϕ 632.8 ,
I r = | E r | 2 = 1 / 2 [ 1 + cos ( ω t - ϕ r ) ] ,
I t = 1 / 2 [ 1 + cos ( ω t - ϕ ) ] ,
ϕ = ϕ + ϕ r

Metrics