Abstract

Using the power-flow equation, we have examined the state of mode coupling in strained and unstrained step-index plastic optical fibers. The strained fibers show much stronger mode coupling than unstrained fibers of the same types. As a result, the coupling lengths where equilibrium mode distribution is achieved and the lengths of fiber required for achieving a steady-state mode distribution for strained fibers are much shorter than the corresponding lengths for unstrained fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishigure, M. Kano, and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?" J. Lightwave Technol. 18, 959-965 (2000).
    [CrossRef]
  2. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, "Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber," J. Lightwave Technol. 21, 111-121 (2003).
    [CrossRef]
  3. D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).
  4. P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
    [CrossRef]
  5. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).
  6. J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
    [CrossRef]
  7. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  8. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
    [CrossRef]
  9. A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.
  10. A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
    [CrossRef]
  11. M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
    [CrossRef]
  12. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  13. W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode conversion coefficients in optical fibers," Appl. Opt. 14, 1538-1542 (1975).
  14. M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
    [CrossRef]
  15. J. Dugas and G. Maurel, "Mode-coupling processes in polymethyl methacrylate-core optical fibers," Appl. Opt. 31, 5069-5079 (1992).
  16. A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
    [CrossRef]
  17. S. Savović and A. Djordjevich, "Optical power flow in plastic clad silica fibers," Appl. Opt. 41, 7588-7591 (2002).
  18. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrúe, M. A. Losada, and M. López-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers," J. Lightwave Technol. 21, 776-781 (2003).
    [CrossRef]
  19. A. Djordjevich and S. Savović, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. B 21, 1437-1442 (2004).
    [CrossRef]
  20. S. Savović and A. Djordjevich, "Influence of numerical aperture on mode coupling in step-index plastic optical fibers," Appl. Opt. 43, 5542-5546 (2004).
    [CrossRef]
  21. S. Savović and A. Djordjevich, "Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation," Appl. Opt. 41, 2826-2830 (2002).
  22. L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).
  23. G. Durana, J. Zubía, J. Arrúe, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
  24. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

2004 (3)

2003 (3)

2002 (3)

2000 (2)

A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

T. Ishigure, M. Kano, and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?" J. Lightwave Technol. 18, 959-965 (2000).
[CrossRef]

1998 (3)

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

1996 (1)

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

1992 (2)

1977 (1)

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

1976 (2)

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).

1975 (1)

1972 (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Aldabaldetreku, G.

Anderson, J. D.

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Appajaiah, A.

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

Arrúe, J.

Casao, J. A.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Chen, W. D.

Djordjevich, A.

Dugas, J.

Durana, G.

Eve, M.

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Fraise, M.

Fuster, G.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

Gambling, W. A.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Garcés, I.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

Garito, A. F.

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Gloge, D.

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Golowich, S. E.

Green, P. E.

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

Hannay, J. H.

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Hanson, D.

D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).

Ishigure, T.

Jankowski, L.

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).

Kalymnios, D.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

Kano, M.

Knudsen, E.

Koeppen, C.

Koike, Y.

López-Higuera, M.

Losada, M. A.

Lou, J.

Mateo, J.

Matsumura, H.

Maurel, G.

Payne, D. N.

Peréz-Vela, P.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Pocholle, J. P.

Reed, W. A.

Rousseau, M.

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

Salinas, I.

Savovic, S.

Shi, R. F.

Wang, J.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

White, W.

Zubía, J.

Appl. Opt. (7)

Bell Syst. Tech. J. (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEE Proc. J: Optoelectron. (1)

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

IEEE Lightwave Commun. Syst. (1)

D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).

IEEE Photon. Technol. Lett. (2)

A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Opt. Quantum Electron. (1)

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Science (1)

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Other (2)

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental arrangement to produce bending strain. This path starts in A and from B is repeated until the fiber end is reached (Ref. 8).

Fig. 2
Fig. 2

Normalized output angular power distribution at different locations along the unstrained PFU fiber calculated for four Gaussian input angles, θ 0 = 0 ° (solid curve), 5° (dashed curve), 10° (dotted curve), and 15° (dashed–dotted curve), with FWHM = 2.5 ° for (a) z = 4 m , (b) z = 10 m , (c) z = 18 m , and (d) z = 49 m (filled squares represent the analytical steady-state solution).

Fig. 3
Fig. 3

Normalized output angular power distribution at different locations along the strained PFU fiber calculated for four Gaussian input angles, θ 0 = 0 ° (solid curve), 5° (dashed curve), 10° (dotted curve), and 15° (dashed-dotted curve), with FWHM = 2.5 ° for (a) z = 0.2 m , (b) z = 0.5 m , (c) z = 0.9 m , and (d) z = 2.5 m (filled squares represent the analytical steady-state solution).

Tables (1)

Tables Icon

Table 1 Coupling Coefficient ( D ), Coupling Length ( L c ), and Length ( z s ) for Achieving the Steady-State Mode Distribution for Strained and Unstrained Fibers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( θ , z ) z = α ( θ ) P ( θ , z ) + D θ θ [ θ P ( θ , z ) θ ] ,
P ( θ , z ) z = D θ P ( θ , z ) θ + D 2 P ( θ , z ) θ 2 .
P ( θ , z ) = J 0 ( 2.405 θ θ c ) exp ( γ 0 z ) ,
P ( θ , z ) = exp [ - ( θ - θ 0 ) 2 2 σ 2 ] ,

Metrics