Abstract

Using the power-flow equation, we have examined the state of mode coupling in strained and unstrained step-index plastic optical fibers. The strained fibers show much stronger mode coupling than unstrained fibers of the same types. As a result, the coupling lengths where equilibrium mode distribution is achieved and the lengths of fiber required for achieving a steady-state mode distribution for strained fibers are much shorter than the corresponding lengths for unstrained fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishigure, M. Kano, and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?" J. Lightwave Technol. 18, 959-965 (2000).
    [CrossRef]
  2. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, "Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber," J. Lightwave Technol. 21, 111-121 (2003).
    [CrossRef]
  3. D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).
  4. P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
    [CrossRef]
  5. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).
  6. J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
    [CrossRef]
  7. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  8. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
    [CrossRef]
  9. A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.
  10. A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
    [CrossRef]
  11. M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
    [CrossRef]
  12. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  13. W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode conversion coefficients in optical fibers," Appl. Opt. 14, 1538-1542 (1975).
  14. M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
    [CrossRef]
  15. J. Dugas and G. Maurel, "Mode-coupling processes in polymethyl methacrylate-core optical fibers," Appl. Opt. 31, 5069-5079 (1992).
  16. A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
    [CrossRef]
  17. S. Savović and A. Djordjevich, "Optical power flow in plastic clad silica fibers," Appl. Opt. 41, 7588-7591 (2002).
  18. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrúe, M. A. Losada, and M. López-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers," J. Lightwave Technol. 21, 776-781 (2003).
    [CrossRef]
  19. A. Djordjevich and S. Savović, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. B 21, 1437-1442 (2004).
    [CrossRef]
  20. S. Savović and A. Djordjevich, "Influence of numerical aperture on mode coupling in step-index plastic optical fibers," Appl. Opt. 43, 5542-5546 (2004).
    [CrossRef]
  21. S. Savović and A. Djordjevich, "Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation," Appl. Opt. 41, 2826-2830 (2002).
  22. L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).
  23. G. Durana, J. Zubía, J. Arrúe, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
  24. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

2004 (3)

2003 (3)

2002 (3)

2000 (2)

T. Ishigure, M. Kano, and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?" J. Lightwave Technol. 18, 959-965 (2000).
[CrossRef]

A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

1998 (3)

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

1996 (1)

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

1992 (2)

1977 (1)

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

1976 (2)

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).

1975 (1)

1972 (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Aldabaldetreku, G.

Anderson, J. D.

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Appajaiah, A.

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

Arrúe, J.

Casao, J. A.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Chen, W. D.

Djordjevich, A.

Dugas, J.

Durana, G.

Eve, M.

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Fraise, M.

Fuster, G.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

Gambling, W. A.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Garcés, I.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

Garito, A. F.

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, "Properties of plastic optical fibers," J. Opt. Soc. Am. B 15, 727-739 (1998).

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Gloge, D.

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Golowich, S. E.

Green, P. E.

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

Hannay, J. H.

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Hanson, D.

D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).

Ishigure, T.

Jankowski, L.

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976).

Kalymnios, D.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

Kano, M.

Knudsen, E.

Koeppen, C.

Koike, Y.

López-Higuera, M.

Losada, M. A.

Lou, J.

Mateo, J.

Matsumura, H.

Maurel, G.

Payne, D. N.

Peréz-Vela, P.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Pocholle, J. P.

Reed, W. A.

Rousseau, M.

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

Salinas, I.

Savovic, S.

Shi, R. F.

Wang, J.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

White, W.

Zubía, J.

Appl. Opt. (7)

Bell Syst. Tech. J. (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEE Proc. J: Optoelectron. (1)

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, "Light power behavior when bending plastic optical fibers," IEE Proc. J: Optoelectron. 145, 313-318 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

P. E. Green, Jr., "Optical networking update," IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

IEEE Lightwave Commun. Syst. (1)

D. Hanson, "Wiring with plastic," IEEE Lightwave Commun. Syst. 3, 34-39 (1992).

IEEE Photon. Technol. Lett. (2)

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

A. Djordjevich and S. Savović, "Investigation of mode coupling in step index plastic optical fibers using the power flow equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Rousseau and L. Jeunhomme, "Numerical solution of the coupled-power equation in step index optical fibers," IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Opt. Quantum Electron. (1)

M. Eve and J. H. Hannay, "Ray theory and random mode coupling in an optical fibre waveguide, I," Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Science (1)

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
[CrossRef]

Other (2)

A. Appajaiah and L. Jankowski, "A review on aging or degradation of polymer optical fibers: polymer chemistry and mathematical approach," in Tenth International Conference on Plastic Optical Fibers and Applications (The International Cooperative of Plastic Optic Fibres, 2001), pp. 317-324.

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental arrangement to produce bending strain. This path starts in A and from B is repeated until the fiber end is reached (Ref. 8).

Fig. 2
Fig. 2

Normalized output angular power distribution at different locations along the unstrained PFU fiber calculated for four Gaussian input angles, θ 0 = 0 ° (solid curve), 5° (dashed curve), 10° (dotted curve), and 15° (dashed–dotted curve), with FWHM = 2.5 ° for (a) z = 4 m , (b) z = 10 m , (c) z = 18 m , and (d) z = 49 m (filled squares represent the analytical steady-state solution).

Fig. 3
Fig. 3

Normalized output angular power distribution at different locations along the strained PFU fiber calculated for four Gaussian input angles, θ 0 = 0 ° (solid curve), 5° (dashed curve), 10° (dotted curve), and 15° (dashed-dotted curve), with FWHM = 2.5 ° for (a) z = 0.2 m , (b) z = 0.5 m , (c) z = 0.9 m , and (d) z = 2.5 m (filled squares represent the analytical steady-state solution).

Tables (1)

Tables Icon

Table 1 Coupling Coefficient ( D ), Coupling Length ( L c ), and Length ( z s ) for Achieving the Steady-State Mode Distribution for Strained and Unstrained Fibers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( θ , z ) z = α ( θ ) P ( θ , z ) + D θ θ [ θ P ( θ , z ) θ ] ,
P ( θ , z ) z = D θ P ( θ , z ) θ + D 2 P ( θ , z ) θ 2 .
P ( θ , z ) = J 0 ( 2.405 θ θ c ) exp ( γ 0 z ) ,
P ( θ , z ) = exp [ - ( θ - θ 0 ) 2 2 σ 2 ] ,

Metrics