Abstract

Two aerosol extinction models have been developed using statistical analysis of long-term optical transmission measurements in Sweden performed at two locations from July 1977 to June 1982. The aerosol volume extinction coefficient for infrared (IR) radiation is calculated by the models with visibility, temperature, and air pressure as input parameters. As in the MODTRAN model, the IR extinction coefficient is proportional to the coefficient at 550  nm, which depends on the visibility. In the new models, the wavelength dependence of the extinction also depends on the visibility. The models predict significantly higher attenuation in the IR than does the Rural aerosol model from MODTRAN, which is commonly used. Comparison with the Maritime model shows that the new models predict lower extinction values in the 35μm region and higher values in the 812μm region. The uncertainties in terms of variance levels are calculated by the models. The properties of aerosols, and thereby the extinction coefficient, are partly correlated to local meteorological parameters, which enables the calculation of a mean predicted value. A substantial part of the variation is, however, caused by conditions in the source area and along the trajectory path of the aerosols. They are not correlated to the local meteorological parameters and therefore cause the variance in the models.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).
  2. Unpublished results and measurements at FOA (former name of FOI) before 1970. Notes from internal meetings.
  3. B. Nilsson, "Model of the relation of IR aerosol extinction to weather parameters," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 239-250 (1992).
    [CrossRef]
  4. B. Nilsson, "Model of the relation between aerosol extinction and meteorological parameters," Atmos. Environ. 28, 815-825 (1994).
    [CrossRef]
  5. L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
    [CrossRef]
  6. H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).
  7. M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in The Infrared & Electro-Optical Systems Handbook Vol. 2, G.Smith, ed. (Infrared Information Analysis Center and SPIE Optical Engineering, 1993), pp. 1-156.
  8. A. Hågård and R. Persson, "Infrared transmission measurement in the atmosphere," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 266-275 (1992).
    [CrossRef]
  9. F. Jani, Statistical Analysis of Measured Atmospheric Optical Transmission Data, final project, ISRN-LiU-MAT-D-95/01-SE (Department of Mathematics, Linköping University, Linköping, Sweden, 1995).
  10. B. Nilsson, "Meteorological influence on aerosol extinction in the 0.2-40 μm wavelength range," Appl. Opt. 18, 3457-3472 (1979).
    [CrossRef] [PubMed]
  11. R. Persson and T. Kaurila, Aerosol Attenuation Model for Scandinavian Environment: Based on Measurements at Lövsättra in Uppland, FOI-R-0689-SE, ISSN 1650-1942 (FOI, Linköping, Sweden, 2002).
    [PubMed]

1999

L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
[CrossRef]

1994

B. Nilsson, "Model of the relation between aerosol extinction and meteorological parameters," Atmos. Environ. 28, 815-825 (1994).
[CrossRef]

1992

B. Nilsson, "Model of the relation of IR aerosol extinction to weather parameters," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 239-250 (1992).
[CrossRef]

A. Hågård and R. Persson, "Infrared transmission measurement in the atmosphere," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 266-275 (1992).
[CrossRef]

1979

Abreu, L. W.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Acharya, P.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Anderson, G. P.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Berk, A.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Bernstein, L. S.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Chetwynd, J. H.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Clough, S. A.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Duncan, D. D.

M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in The Infrared & Electro-Optical Systems Handbook Vol. 2, G.Smith, ed. (Infrared Information Analysis Center and SPIE Optical Engineering, 1993), pp. 1-156.

Engardt, M.

L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
[CrossRef]

Foltescu, V.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Gallery, W. O.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Hågård, A.

A. Hågård and R. Persson, "Infrared transmission measurement in the atmosphere," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 266-275 (1992).
[CrossRef]

Hass, H.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Jani, F.

F. Jani, Statistical Analysis of Measured Atmospheric Optical Transmission Data, final project, ISRN-LiU-MAT-D-95/01-SE (Department of Mathematics, Linköping University, Linköping, Sweden, 1995).

Kaurila, T.

R. Persson and T. Kaurila, Aerosol Attenuation Model for Scandinavian Environment: Based on Measurements at Lövsättra in Uppland, FOI-R-0689-SE, ISSN 1650-1942 (FOI, Linköping, Sweden, 2002).
[PubMed]

Kessler, C.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Kneizy, F. X.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Langner, J.

L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
[CrossRef]

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Matthijsen, J.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Nilsson, B.

B. Nilsson, "Model of the relation between aerosol extinction and meteorological parameters," Atmos. Environ. 28, 815-825 (1994).
[CrossRef]

B. Nilsson, "Model of the relation of IR aerosol extinction to weather parameters," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 239-250 (1992).
[CrossRef]

B. Nilsson, "Meteorological influence on aerosol extinction in the 0.2-40 μm wavelength range," Appl. Opt. 18, 3457-3472 (1979).
[CrossRef] [PubMed]

Persson, R.

A. Hågård and R. Persson, "Infrared transmission measurement in the atmosphere," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 266-275 (1992).
[CrossRef]

R. Persson and T. Kaurila, Aerosol Attenuation Model for Scandinavian Environment: Based on Measurements at Lövsättra in Uppland, FOI-R-0689-SE, ISSN 1650-1942 (FOI, Linköping, Sweden, 2002).
[PubMed]

Robertson, D. C.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Robertson, L.

L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
[CrossRef]

Rothman, L. S.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Sauter, F.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Schaap, M.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Selby, J. E. A.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Shettle, E. P.

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Stern, R.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Thomas, M. E.

M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in The Infrared & Electro-Optical Systems Handbook Vol. 2, G.Smith, ed. (Infrared Information Analysis Center and SPIE Optical Engineering, 1993), pp. 1-156.

van Loon, M.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Zlatev, Z.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

Appl. Opt.

Atmos. Environ.

B. Nilsson, "Model of the relation between aerosol extinction and meteorological parameters," Atmos. Environ. 28, 815-825 (1994).
[CrossRef]

J. Appl. Meteorol.

L. Robertson, J. Langner, and M. Engardt, "An Eulerian limited-area atmospheric transport model," J. Appl. Meteorol. 38, 190-210 (1999).
[CrossRef]

Proc. SPIE

A. Hågård and R. Persson, "Infrared transmission measurement in the atmosphere," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 266-275 (1992).
[CrossRef]

B. Nilsson, "Model of the relation of IR aerosol extinction to weather parameters," in Infrared Technology XVIII, B. F. Andresen and F. D. Shepherd, eds., Proc. SPIE 1762, 239-250 (1992).
[CrossRef]

Other

F. Jani, Statistical Analysis of Measured Atmospheric Optical Transmission Data, final project, ISRN-LiU-MAT-D-95/01-SE (Department of Mathematics, Linköping University, Linköping, Sweden, 1995).

R. Persson and T. Kaurila, Aerosol Attenuation Model for Scandinavian Environment: Based on Measurements at Lövsättra in Uppland, FOI-R-0689-SE, ISSN 1650-1942 (FOI, Linköping, Sweden, 2002).
[PubMed]

F. X. Kneizy, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom Air Force Base, Mass., 1996).

Unpublished results and measurements at FOA (former name of FOI) before 1970. Notes from internal meetings.

H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu, and M. Schaap, Aerosol Modeling: Results and Intercomparison from European Regional-Scale Modeling Systems (EUROTRAC ISS, Munich, Germany, 2003).

M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in The Infrared & Electro-Optical Systems Handbook Vol. 2, G.Smith, ed. (Infrared Information Analysis Center and SPIE Optical Engineering, 1993), pp. 1-156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Map shows southern part of Sweden with the five largest cities (circles). The measurement sites Lövsättra and Normstorp are marked with black text and crosses.

Fig. 2
Fig. 2

Schematic of the OLA transmissometer.

Fig. 3
Fig. 3

Calculated relative error Δα∕α of the measured extinction coefficient as a function of α for the hourly averaged measurements.

Fig. 4
Fig. 4

Amount of approved measurements at Lövsättra and at Normstorp during each month. Criteria for selecting measurements are given in the text.

Fig. 5
Fig. 5

IR factor R V versus temperature at 3.8 μm as α V = 0.3 km−1.

Fig. 6
Fig. 6

Probability density distribution of the relative error of α a between the measurements and the Lövsättra model (solid curve) and its fit (dashed curve) at 8.9 μm.

Fig. 7
Fig. 7

Comparison of the measured mean (circles) and the estimated (solid curve) α a in a winter and a summer case at Lövsättra and Normstorp. The error bars give the standard deviation of the selected measurement set, while the dashed curves show the uncertainty boundaries of the model. Further details are given in the text.

Fig. 8
Fig. 8

Comparison of the aerosol extinction models and a few aerosol models in MODTRAN 3.7 in a winter and a summer case. The meteorological parameters employed in the calculations are shown.

Fig. 9
Fig. 9

α a versus λ from the Normstorp model for three different temperatures. The visibility and the air pressure are 15 km and 1005 hPa, respectively.

Tables (5)

Tables Icon

Table 1 Coefficients for the Lövsättra Model ( b ik = 0)

Tables Icon

Table 2 Coefficients for the Normstorp Model

Tables Icon

Table 3 Correlation Coefficients for Pairs of Meteorological Parameters in the Measured Data

Tables Icon

Table 4 Coefficient of Determination r 2 for the Aerosol Extinction Models at the OLA Wavelengths

Tables Icon

Table 5 Total Mean Transmission (%) in the Atmosphere along a Horizontal Path l for Three Wavelength Bands with Different Aerosol Models a

Equations (148)

Equations on this page are rendered with MathJax. Learn more.

550   nm
3 5 μ m
8 1 2 μ m
( 0.45 0 . 7 μ m )
( 0. 7 1 5 μ m )
( H 2 O )
( CO 2 )
29.994
1   km
12.5 μ m
0.3 0 .65
8 1 4 μ m
9.3 μ m
500   m
1   km
5   m
20 %
30   cm
10   min
550   nm
70 %
0.59 μ m
0.55 μ m
2 %
τ = exp ( α l ) ,
α g
α a
Δ α / α
12.5 μ m
10.7 μ m
α V
0.1 4 . 5 km - 1
α V
Δ α / α
10 %
0.87   km
H 2 O
CO 2
CO 2
8 14 μ m
CO 2
0.04 km - 1
CO 2
30   km
60 %
α a
0.55 μ m
5 %
10.7 μ m
10.7 μ m
R V ( λ ) = α a ( λ ) α V ,
α a ( λ )
α V
α a ( 0.55 μ m )
α V
0.55 μ m
α V
2 %
α V
α V = α a ( 550   nm ) = 3.91 V .
R V ( λ )
λ i
R V
R V
α V
R V
R V
1 %
R V
R V
R V
λ i
R V ik ( α V , P ) = R V 0 ik + a i k α V + b i k ( P P 0 ) .
P 0
k = 1
t < 10 ° C
k = 2
10 t < 0 ° C
k = 3
0 t < 10 ° C
k = 4 , t 10 ° C
± 2.5 ° C
R V
a i k
b i k
b i k
R V
R V
α V = 0.3 km - 1
R V
R V
10 ° C
α V
α V
α V
R V
λ i
α a ( λ i )
1.5 μ m
1.54 μ m
1.7 μ m
Δ α / α
8.9 μ m
μ Δ
σ Δ
μ Δ ± σ Δ
16 %
84 %
68 %
8.9 μ m
σ Δ ( λ ) = [ ln ( λ λ 0 + c ) ] γ + σ 0 ,
λ 0 = 1 μ m
σ 0
σ Δ ( λ )
r 2
α a
r 2
0.7 2.5 μ m
3 5 μ m
8 1 4 μ m
r 2
15 ° C
R V 0
80 % 90 %
R V ( λ )
α V
α V
10 %
α V
R V
10 %
3 μ m
R V
R V
α a
R V
R V
90 %
80 %
13.1 %
6.9 %
8.5 %
9 %
R V
30 %
3 μ m
10   km
10   km

Metrics