Abstract

We show what we believe to be a novel way to use silicon in infrared radio communication as a suitable material for the realization of optical diffusers in the range of 8501600  nm. A crystalline silicon wafer is made porous by means of electrochemical etching. The porous silicon produced is optically characterized, and measurements report a high reflectance in the band of interest. We also study the angular distribution of diffused radiation by the porous silicon surface at different angles of incident radiation. Measurements show that radiation diffuses in a quasi-Lambertian manner, confirming the good performance of this material as an incident radiation diffuser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
    [CrossRef]
  2. P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
    [CrossRef]
  3. J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
    [CrossRef]
  4. V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
    [CrossRef]
  5. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, "Antireflection surfaces in silicon using binary optics technology," Appl. Opt. 31, 4371-4376 (1992).
    [CrossRef] [PubMed]
  6. L. Canham, Properties of Porous Silicon (Inspec, 1997), pp. 44-86.
  7. P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
    [CrossRef]
  8. J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
    [CrossRef]
  9. C. E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-52031267 (National Renewable Energy Laboratory, 2002), p. 8.
    [CrossRef]
  10. G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).
  11. U. Gösele and V. Lehmann, "Porous silicon quantum sponge structure," in Porous Silicon, Z.C.Feng and R.Tsu, eds. (World Scientific, 1994), pp. 17-39.
    [CrossRef]
  12. H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
    [CrossRef]
  13. M. A. Green, "Light trapping," in High Efficiency Silicon Solar Cells (Trans Tech Publications, 1987), pp. 69-82.

2003 (1)

J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
[CrossRef]

2000 (2)

V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
[CrossRef]

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

1997 (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

1996 (2)

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
[CrossRef]

1995 (1)

P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
[CrossRef]

1992 (2)

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

M. E. Motamedi, W. H. Southwell, and W. J. Gunning, "Antireflection surfaces in silicon using binary optics technology," Appl. Opt. 31, 4371-4376 (1992).
[CrossRef] [PubMed]

Banerjee, S.

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Bright, V. M.

J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
[CrossRef]

Canham, L.

L. Canham, Properties of Porous Silicon (Inspec, 1997), pp. 44-86.

Chen, G. C. K.

J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
[CrossRef]

Datta, S. K.

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Di Francia, G.

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
[CrossRef]

Eardley, P. L.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

Gösele, U.

U. Gösele and V. Lehmann, "Porous silicon quantum sponge structure," in Porous Silicon, Z.C.Feng and R.Tsu, eds. (World Scientific, 1994), pp. 17-39.
[CrossRef]

Green, M. A.

M. A. Green, "Light trapping," in High Efficiency Silicon Solar Cells (Trans Tech Publications, 1987), pp. 69-82.

Gunning, W. J.

Jungnickel, V.

V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Kennedy, C. E.

C. E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-52031267 (National Renewable Energy Laboratory, 2002), p. 8.
[CrossRef]

Kolesar, J. S.

J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
[CrossRef]

La Ferrara, V.

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
[CrossRef]

Lancellotti, L.

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

Lehmann, V.

U. Gösele and V. Lehmann, "Porous silicon quantum sponge structure," in Porous Silicon, Z.C.Feng and R.Tsu, eds. (World Scientific, 1994), pp. 17-39.
[CrossRef]

Lim, T.-K.

J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
[CrossRef]

McKee, P.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

Menna, P.

P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
[CrossRef]

Motamedi, M. E.

Mukherjee, M. K.

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Mukhopadhyay, K.

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Pohl, V.

V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
[CrossRef]

Quercia, L.

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

Saha, H.

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Southwell, W. H.

Sowders, D. M.

J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
[CrossRef]

von Helmolt, C.

V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
[CrossRef]

Wisely, D. R.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

Wood, D.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

Yao, J.

J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
[CrossRef]

Appl. Opt. (1)

IEE Proc. Optoelectron. (2)

P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, "Holograms for optical wireless LANs," IEE Proc. Optoelectron. 143, 365-369 (1996).
[CrossRef]

V. Pohl, V. Jungnickel, C. von Helmolt, "Integrating-sphere diffuser for wireless infrared communication," IEE Proc. Optoelectron. 147, 281-285 (2000).
[CrossRef]

IEEE Trans. Electron Devices (1)

H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cells," IEEE Trans. Electron Devices 39, 1100-1107 (1992).
[CrossRef]

Opt. Eng. (1)

J. Yao, G. C. K. Chen, T.-K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324 (2003).
[CrossRef]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Recent Res. Dev. Electrochem. (1)

G. Di Francia, V. La Ferrara, L. Lancellotti, and L. Quercia, "Porous silicon based gas sensors," Recent Res. Dev. Electrochem. 3, 93-106 (2000).

Sol. Energy Mater. Sol. Cells (1)

P. Menna, G. Di Francia, and V. La Ferrara, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995).
[CrossRef]

Thin Solid Films (1)

J. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders, "Optical reflectance reduction of textured silicon surface coated with an antireflective thin film," Thin Solid Films 290-291, 23-29 (1996).
[CrossRef]

Other (4)

C. E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-52031267 (National Renewable Energy Laboratory, 2002), p. 8.
[CrossRef]

L. Canham, Properties of Porous Silicon (Inspec, 1997), pp. 44-86.

U. Gösele and V. Lehmann, "Porous silicon quantum sponge structure," in Porous Silicon, Z.C.Feng and R.Tsu, eds. (World Scientific, 1994), pp. 17-39.
[CrossRef]

M. A. Green, "Light trapping," in High Efficiency Silicon Solar Cells (Trans Tech Publications, 1987), pp. 69-82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PS IR diffuser SEM morphology: (a) PS surface, (b) surface made by holographic technology.

Fig. 2
Fig. 2

Schematic illustration of angle-resolved diffusion measurements (W1, W2, quartz windows transmitting the sample and reference beam coming from the spectrophotometer, respectively; MR1, concave mirror). The radiation wavelength is selected by a holographic grating monochromator and split into the sample beam and reference beam. The reference beam is collimated on the integrating sphere with detectors, whereas the sample beam diffuses on the sample and is collected at different angles by an optical fiber on the same integrating sphere.

Fig. 3
Fig. 3

PS IR diffuser spectra reflectance versus the impinging light wavelength for increasing sample thickness: For sample S1 ( 8   μm thick) the reflectance in the IR range is flat from 1200 to 2500   nm , assuming a constant value of about 40% . The highest values in this range are reached for the sample series S3 ( 80   μm ) whose reflectance between 1100 and 2000   nm is higher than 0.85. Reflectance is normalized to a Labsphere Spectralon reflectance standard.

Fig. 4
Fig. 4

Angle-resolved intensity diffusion of incident radiation for different wavelengths compared with Lambertian diffusion.

Tables (1)

Tables Icon

Table 1 Sample Characteristics and IR Reflectance Values (1000 nm Wavelength)

Metrics