Abstract

The techniques for fabricating a hollow optical fiber with an inner silver layer and a cyclic olefin polymer (COP) layer have been improved to reduce the surface roughness of these two layers. The loss spectrum was thereby drastically reduced over a wide wavelength range, from visible to near infrared. Optimization of the COP layer thickness resulted in low loss simultaneously at several key laser wavelengths. Infrared hollow fiber with low loss was developed for Er:YAG and Nd:YAG lasers. It can also deliver green and red pilot beams with low loss. Use of this fiber in therapeutic and pilot lasers should prove useful for research and development in laser medicine.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
    [CrossRef]
  2. M. B. Levy and K. D. Laakmann, "Flexible waveguide for CO2 laser surgery," in Proc. SPIE 605, 57-58 (1986).
  3. N. Croitoru, A. Inberg, M. Ben-David, and I. Gannot, "Broad band and low loss mid-IR flexible hollow waveguides," Opt. Express 12, 1341-1352 (2004).
    [CrossRef]
  4. R. George and J. A. Harrington, "Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings," Appl. Opt. 44, 6449-6455 (2005).
    [CrossRef]
  5. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
  6. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, "Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared," Appl. Opt. 37, 7758-7762 (1998).
  7. Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
    [CrossRef]
  8. C. D. Rabii and J. A. Harrington, "Optical properties of dual-core hollow waveguide," Appl. Opt. 35, 6249-6252 (1996).
  9. M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984).
  10. K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
    [CrossRef]
  11. Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, "Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared," Opt. Lett. 30, 2867-2869 (2005).
    [CrossRef]
  12. K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
    [CrossRef]
  13. J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
    [CrossRef]

2005 (2)

2004 (1)

2002 (1)

2001 (2)

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

1999 (1)

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

1998 (1)

1996 (1)

1994 (1)

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

1986 (1)

M. B. Levy and K. D. Laakmann, "Flexible waveguide for CO2 laser surgery," in Proc. SPIE 605, 57-58 (1986).

1984 (1)

M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984).

1980 (1)

E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
[CrossRef]

Abe, S.

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Abe, Y.

Aizawa, M.

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Arai, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Bass, M.

E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
[CrossRef]

Ben-David, M.

Cecconi, P. P.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Chan, K. F.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Choi, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Corbin, N. S.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Croitoru, N.

Gannot, I.

Garmire, E.

E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
[CrossRef]

George, R.

Glickman, R. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Hammer, D. X.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Harrington, J. A.

Iida, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Inberg, A.

Inoue, M.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Ito, K.

Jansen, E. D.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Kamerer, A. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Kato, Y.

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984).

Laakmann, K. D.

M. B. Levy and K. D. Laakmann, "Flexible waveguide for CO2 laser surgery," in Proc. SPIE 605, 57-58 (1986).

Levy, M. B.

M. B. Levy and K. D. Laakmann, "Flexible waveguide for CO2 laser surgery," in Proc. SPIE 605, 57-58 (1986).

Matsuoka, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Matsuura, Y.

McMahon, T.

E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
[CrossRef]

Miyagi, M.

Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, "Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared," Opt. Lett. 30, 2867-2869 (2005).
[CrossRef]

Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, "Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared," Appl. Opt. 37, 7758-7762 (1998).

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984).

Noda, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Onodera, S.

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Osawa, M.

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Pfefer, T. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Rabii, C. D.

Sato, S.

Shi, Y. W.

Sorg, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Takada, G.

Taniwaki, M.

Teichman, J. M. H.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Tomiyasu, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Uyama, H.

Vargas, G.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

Wang, Y.

Welch, A. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Yamamoto, T.

Yoshii, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Appl. Opt. (4)

IEEE J. Quantum Electron. (2)

E. Garmire, T. McMahon, and M. Bass, "Flexible infrared waveguides for high power transmission," IEEE J. Quantum Electron. QE-16, 23-32 (1980).
[CrossRef]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, "Free electron laser ablation of urinary calculi: an experimental study," IEEE J. Quantum Electron. 7, 1022-1033 (2001).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. LT-2, 116-126 (1984).

J. Urol. (1)

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, and A. J. Welch, "Erbium:YAG versus holmium:YAG lithotripsy," J. Urol. 165, 876-879 (2001).
[CrossRef]

Lasers Surg. Med. (1)

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, "Endoscopic lithotripsy with the holmium:YAG laser," Lasers Surg. Med. 25, 389-395 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

M. B. Levy and K. D. Laakmann, "Flexible waveguide for CO2 laser surgery," in Proc. SPIE 605, 57-58 (1986).

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, and S. Onodera, "New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications," Proc. SPIE 2131, 4-10 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

AFM photographs of a deposited silver surface.

Fig. 2
Fig. 2

Loss spectra of a silver-coated, hollow optical fiber ( 700 μ m  × 1   m) in visible and infrared regions.

Fig. 3
Fig. 3

Setup for producing solvent ambient.

Fig. 4
Fig. 4

Surface roughness of COP layers formed in various ambients.

Fig. 5
Fig. 5

Theoretical attenuation of the HE11 mode as a function of COP film thickness for Nd:YAG , Er:YAG laser light, and red and green pilot beams; the inner diameter of the fiber was 700 μ m .

Fig. 6
Fig. 6

Spectral loss of a COP-coated, silver hollow fiber ( 700 μ m  × 1   m) optimized for delivering Er:YAG and Nd:YAG laser light as well as green and red pilot beams.

Fig. 7
Fig. 7

Bending loss properties of a hollow fiber ( 700 μ m  × 1   m) for Er:YAG and Nd:YAG laser lights as well as green and red pilot beams.

Fig. 8
Fig. 8

Spectral loss of a COP-coated, silver hollow fiber ( 700 μ m  × 1   m) optimized for delivering CO 2 laser light as well as green and red pilot beams.

Fig. 9
Fig. 9

Bending loss properties of a hollow fiber ( 700 μ m  × 1   m) for CO 2 laser light as well as green and red pilot beams.

Tables (2)

Tables Icon

Table 1 Composition of SnCl2 Solution

Tables Icon

Table 2 Volatilization Rates of Solvents (mg)

Metrics