Abstract

Chromatic dispersion of optical filters is characterized by what is believed to be novel broadband spectral interferometry, which is based on dual-wavelength heterodyne measurement of spectral phase. High phase stability is achieved by differential phase detection using two lasers for wavelength-swept probe and phase-tracking reference. The technique provides self-tracking interferometry by passive stabilization of optical phase and allows real-time measurement of spectral phase and group delay with a low phase drift of less than 0.04π. A fiber Bragg grating and a thin-film filter are characterized by this method.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription