Abstract

Traditional high-precision optical techniques, such as interferometry, are in ever-greater demand for noncontrolled environments. This is the case for the UPC-ZEBRA, a large-aperture interferometer that was built to measure vertical discontinuities (i.e., piston errors) in segmented mirrors. The large mechanical systems used to drive the interferometer to the different measurement positions generate perturbations that are highly incompatible with the expected piston measurements on the nanometer scale. We introduce a new system based on a line-scan CCD to track interference fringes. The error signal obtained from this fringe tracker has been used in a closed-loop control system to actively stabilize the interferometer. The perturbation has been attenuated by a factor of 1/200.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Barone, R. De Rosa, L. Di Fiore, F. Fusco, A. Grado, L. Milano, and G. Russo, "Real-time digital control of optical interferometers by the mechanical-modulation technique," Appl. Opt. 33, 7846-7856 (1994).
    [CrossRef] [PubMed]
  2. F. Barone, E. Calloni, L. Di Fiore, A. Grado, L. Milano, and G. Russo, "Digital error-signal extraction technique for real-time automatic control of optical interferometers," Appl. Opt. 34, 8100-8105 (1995).
    [CrossRef] [PubMed]
  3. J. L. Camp, L. Sievers, R. Bork, and J. Heefner, "Guided lock acquisition in a suspended Fabry-Perot cavity," Opt. Lett. 20, 2463-2465 (1995).
    [CrossRef] [PubMed]
  4. G. W. Neat, J. W. Melody, and B. J. Lurie, "Vibration attenuation approach for spaceborne optical interferometers," IEEE Trans. Control Syst. Technol. 6, 689-700 (1998).
  5. G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).
  6. I. Yamaguchi, J. Liu, and J. Kato, "Active phase-shifting interferometers for shape and deformation measurements," Opt. Eng. 35, 2930-2937 (1996).
    [CrossRef]
  7. M. E. Germain, "Intensified CCD fringe tracker," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 1029-1034 (2000).
    [CrossRef]
  8. S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
    [CrossRef]
  9. L. Koechin, P. R. Lawson, D. Mourard, A. Blazit, D. Bonneau, F. Morand, Ph. Stee, I. Tallon-Bosc, and F. Vakili, "Dispersed fringe tracking with the multi-ro apertures of the Grand Interféromètre à 2 Télescopes," Appl. Opt. 35, 3002-3009 (1996).
    [CrossRef]
  10. A. Pintó, "New interferometric technique for piston measurement and phasing of segmented mirrors," Ph.D. dissertation (Universitat Politècnica de Catalunya, Barcelona, Spain, 2002).
  11. C. Pizarro, J. Arasa, F. Laguarta, N. Tomas, and A. Pintó, "Design of an interferometric system for the measurement of phasing errors in segmented mirrors," Appl. Opt. 41, 4562-4570 (2002).
    [CrossRef] [PubMed]
  12. A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "Testing and applicability of the UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes," Appl. Opt. 43, 1091-1096 (2004).
    [CrossRef] [PubMed]
  13. R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."
  14. A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
    [CrossRef]

2004 (1)

2002 (2)

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

C. Pizarro, J. Arasa, F. Laguarta, N. Tomas, and A. Pintó, "Design of an interferometric system for the measurement of phasing errors in segmented mirrors," Appl. Opt. 41, 4562-4570 (2002).
[CrossRef] [PubMed]

2000 (2)

M. E. Germain, "Intensified CCD fringe tracker," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 1029-1034 (2000).
[CrossRef]

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

1997 (1)

G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).

1996 (2)

1995 (2)

1994 (1)

Arasa, J.

Artigas, R.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "Testing and applicability of the UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes," Appl. Opt. 43, 1091-1096 (2004).
[CrossRef] [PubMed]

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

Barone, F.

Blazit, A.

Bonneau, D.

Bork, R.

Bregman, J. D.

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Burge, J. H.

G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).

Cadevall, C.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "Testing and applicability of the UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes," Appl. Opt. 43, 1091-1096 (2004).
[CrossRef] [PubMed]

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

Calloni, E.

Camp, J. L.

Cole, G.

G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).

Comasòlivas, R.

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

De Rosa, R.

Dettman, L. R.

G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).

Di Fiore, L.

Escobet, T.

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Fusco, F.

Germain, M. E.

M. E. Germain, "Intensified CCD fringe tracker," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 1029-1034 (2000).
[CrossRef]

Grado, A.

Heefner, J.

Kato, J.

I. Yamaguchi, J. Liu, and J. Kato, "Active phase-shifting interferometers for shape and deformation measurements," Opt. Eng. 35, 2930-2937 (1996).
[CrossRef]

Koechin, L.

Laguarta, F.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "Testing and applicability of the UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes," Appl. Opt. 43, 1091-1096 (2004).
[CrossRef] [PubMed]

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

C. Pizarro, J. Arasa, F. Laguarta, N. Tomas, and A. Pintó, "Design of an interferometric system for the measurement of phasing errors in segmented mirrors," Appl. Opt. 41, 4562-4570 (2002).
[CrossRef] [PubMed]

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Lawson, P. R.

Liu, J.

I. Yamaguchi, J. Liu, and J. Kato, "Active phase-shifting interferometers for shape and deformation measurements," Opt. Eng. 35, 2930-2937 (1996).
[CrossRef]

Lurie, B. J.

G. W. Neat, J. W. Melody, and B. J. Lurie, "Vibration attenuation approach for spaceborne optical interferometers," IEEE Trans. Control Syst. Technol. 6, 689-700 (1998).

Mah, R.

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Melody, J. W.

G. W. Neat, J. W. Melody, and B. J. Lurie, "Vibration attenuation approach for spaceborne optical interferometers," IEEE Trans. Control Syst. Technol. 6, 689-700 (1998).

Milano, L.

Morand, F.

Morel, S.

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Mourard, D.

Neat, G. W.

G. W. Neat, J. W. Melody, and B. J. Lurie, "Vibration attenuation approach for spaceborne optical interferometers," IEEE Trans. Control Syst. Technol. 6, 689-700 (1998).

Pintó, A.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "Testing and applicability of the UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes," Appl. Opt. 43, 1091-1096 (2004).
[CrossRef] [PubMed]

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

C. Pizarro, J. Arasa, F. Laguarta, N. Tomas, and A. Pintó, "Design of an interferometric system for the measurement of phasing errors in segmented mirrors," Appl. Opt. 41, 4562-4570 (2002).
[CrossRef] [PubMed]

A. Pintó, "New interferometric technique for piston measurement and phasing of segmented mirrors," Ph.D. dissertation (Universitat Politècnica de Catalunya, Barcelona, Spain, 2002).

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Pizarro, C.

Quevedo, J.

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Russo, G.

Sievers, L.

Tomas, N.

Traub, W. A.

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Vicente, J.

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Wilson, E.

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, J. Liu, and J. Kato, "Active phase-shifting interferometers for shape and deformation measurements," Opt. Eng. 35, 2930-2937 (1996).
[CrossRef]

Appl. Opt. (5)

J. Opt. A, Pure Appl. Opt. (1)

A. Pintó, F. Laguarta, R. Artigas, and C. Cadevall, "New interferometric technique for piston measurement in segmented mirrors," J. Opt. A, Pure Appl. Opt. 4, 369-375 (2002).
[CrossRef]

Opt. Eng. (1)

I. Yamaguchi, J. Liu, and J. Kato, "Active phase-shifting interferometers for shape and deformation measurements," Opt. Eng. 35, 2930-2937 (1996).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

M. E. Germain, "Intensified CCD fringe tracker," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 1029-1034 (2000).
[CrossRef]

S. Morel, W. A. Traub, J. D. Bregman, R. Mah, and E. Wilson, "Fringe-tracking experiments at the IOTA interferometer," in Interferometry in Optical Astronomy, P. J. Léna and A. Quirrenbach, eds., Proc. SPIE 4006, 506-513 (2000).
[CrossRef]

Other (4)

A. Pintó, "New interferometric technique for piston measurement and phasing of segmented mirrors," Ph.D. dissertation (Universitat Politècnica de Catalunya, Barcelona, Spain, 2002).

G. W. Neat, J. W. Melody, and B. J. Lurie, "Vibration attenuation approach for spaceborne optical interferometers," IEEE Trans. Control Syst. Technol. 6, 689-700 (1998).

G. Cole, J. H. Burge, and L. R. Dettman, "Vibration stabilization of a phase-shifting interferometer for large optics," in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 438-446 (1997).

R. Comasòlivas, T. Escobet, J. Quevedo, A. Pintó, F. Laguarta, and J. Vicenteare preparing a paper to be called "Active control based on QFT for vibration attenuation in optical interferometers."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Detailed control diagram.

Fig. 2
Fig. 2

Diagram showing the signal-processing algorithm.

Fig. 3
Fig. 3

Results of the simulation for a sinusoidal perturbation of ± 300   μm amplitude at 0 .5   Hz : (a) perturbation introduced and (b) residual error (extracted perturbation minus perturbation). The sampling frequency was 50   kHz .

Fig. 4
Fig. 4

Results of the simulation for a linear perturbation of 1.6 μm∕s: (a) perturbation introduced and (b) residual error (extracted perturbation minus perturbation). The sampling frequency was 250 Hz. Please note that the vertical scale is now in nanometers.

Fig. 5
Fig. 5

General view of the UPC-ZEBRA interferometer in which several elements of the active vibration stabilization system are indicated.

Fig. 6
Fig. 6

Segment simulation interface located below the interferometer.

Fig. 7
Fig. 7

Transmission curve for the beam coupler–beam decoupler, measured using a Perkin-Elmer Lambda 3B spectrophotometer (at an incidence angle of 45°).

Fig. 8
Fig. 8

Performance of fringe tracker (fringe speed, 1 .6   μm / s ): (a) perturbation introduced, (b) perturbation measured by the fringe tracker versus perturbation measured by HP10719A, and (c) difference between the results of the fringe tracker and HP10719A versus time.

Fig. 9
Fig. 9

Graph showing the performance of the active control system. The perturbation is reduced by a factor of 1 / 200 when the closed-loop system is activated.

Tables (1)

Tables Icon

Table 1 Definition of Pixel Intensities at Different Times

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = pixels | I ( pixel , t ) I ( pixel , t d t ) | .
h ( t ) = 8 N C d t λ | d n ( t ) d t | ,
s gn [ d n ( t ) / d t ] = sgn { [ I i ( t d t ) I i - 1 ( t d t ) ] × [ I i - 1 ( t d t ) I i - 1 ( t ) ] } .
d n ( t ) d t = λ 8 N C d t h ( t ) ×  sgn [ d n ( t ) d t ] .

Metrics