Abstract

Si-based surface plasmon resonance (SPR) in the Kretschmann–Raether geometry is considered as a platform for the optical measurement of high refractive index films. The implementation of the SPR effect becomes possible due to the relatively high index of refraction of Si compared to most materials. As examples we study the SPR responses for some important semiconductor-based films, including laser-ablated porous silicon and thin germanium films. Using SPR data, we determine the refractive indices of these films for different parameters (thickness and porosity) and ambiences. We also discuss novel SPR biosensor architectures with the use of these solid films.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
    [CrossRef]
  3. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
    [CrossRef] [PubMed]
  4. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
    [CrossRef]
  5. L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469-1470 (1988).
    [CrossRef]
  6. R. C. Jorgenson and S. S. Yee, "Fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
    [CrossRef]
  7. E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).
  8. A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
    [CrossRef]
  9. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
    [CrossRef]
  10. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
    [CrossRef]
  11. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
    [CrossRef]
  12. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
    [CrossRef] [PubMed]
  13. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
    [CrossRef]
  14. V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
    [CrossRef]
  15. L. G. Parratt, "Surface studies of solids by total reflection of X-rays," Phys. Rev. 95, 359-369 (1954).
    [CrossRef]
  16. Data may be retrieved athttp://www.sopra-sa.com/more/database.asp.
  17. R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon-polaritons," J. Phys. F 17, 277-287 (1987).
    [CrossRef]
  18. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
    [CrossRef]
  19. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
    [CrossRef]
  20. E. V. Astrova and V. A. Tolmachev, "Effective refractive index and composition of oxidized porous silicon films," Mater. Sci. Eng. B 69, 142-148 (2000).
    [CrossRef]
  21. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  22. D. A. G. Bruggeman, "Calculation of various physical constants of heterogeneous substances. I. Dielectric constant and conductivity of mixtures of isotropic substances," Ann. Phys. 24, 636-664 (1935).
    [CrossRef]
  23. J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
    [CrossRef]
  24. M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
    [CrossRef]

2004 (1)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

2003 (3)

2002 (1)

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

2000 (2)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

E. V. Astrova and V. A. Tolmachev, "Effective refractive index and composition of oxidized porous silicon films," Mater. Sci. Eng. B 69, 142-148 (2000).
[CrossRef]

1999 (2)

J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

1998 (2)

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

1996 (2)

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

1993 (1)

R. C. Jorgenson and S. S. Yee, "Fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

1988 (1)

L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469-1470 (1988).
[CrossRef]

1987 (1)

R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon-polaritons," J. Phys. F 17, 277-287 (1987).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

1954 (1)

L. G. Parratt, "Surface studies of solids by total reflection of X-rays," Phys. Rev. 95, 359-369 (1954).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, "Calculation of various physical constants of heterogeneous substances. I. Dielectric constant and conductivity of mixtures of isotropic substances," Ann. Phys. 24, 636-664 (1935).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Arens-Fischer, R.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Astrova, E. V.

E. V. Astrova and V. A. Tolmachev, "Effective refractive index and composition of oxidized porous silicon films," Mater. Sci. Eng. B 69, 142-148 (2000).
[CrossRef]

Bartholomew, D. U.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Brockman, J. M.

J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, "Calculation of various physical constants of heterogeneous substances. I. Dielectric constant and conductivity of mixtures of isotropic substances," Ann. Phys. 24, 636-664 (1935).
[CrossRef]

Carr, R.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Corn, R. M.

J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
[CrossRef]

Elkind, J.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Frohnhoff, S.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Frutos, A. G.

J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
[CrossRef]

Furlong, C. E.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Innes, R. A.

R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon-polaritons," J. Phys. F 17, 277-287 (1987).
[CrossRef]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, "Fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Kabashin, A. V.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Kabashin, V.

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

Kordos, P.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Kukanskis, K. A.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Lundstrum, I.

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Luong, J. H. T.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

Luth, H.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Melendez, J. L.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Meunier, M.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

Mills, D. L.

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Parratt, L. G.

L. G. Parratt, "Surface studies of solids by total reflection of X-rays," Phys. Rev. 95, 359-369 (1954).
[CrossRef]

Patskovsky, S.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
[CrossRef]

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Sambles, J. R.

R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon-polaritons," J. Phys. F 17, 277-287 (1987).
[CrossRef]

Schoning, M. J.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Sylvestre, J.-P.

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

Thust, M.

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Tolmachev, V. A.

E. V. Astrova and V. A. Tolmachev, "Effective refractive index and composition of oxidized porous silicon films," Mater. Sci. Eng. B 69, 142-148 (2000).
[CrossRef]

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469-1470 (1988).
[CrossRef]

Woodbury, R. G.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Yee, S. S.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

R. C. Jorgenson and S. S. Yee, "Fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469-1470 (1988).
[CrossRef]

Anal. Lett. (1)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Multi-layer Si-based surface plasmon resonance structure for absorption sensing," Anal. Lett. 36, 3237-3246 (2003).
[CrossRef]

Ann. Phys. (1)

D. A. G. Bruggeman, "Calculation of various physical constants of heterogeneous substances. I. Dielectric constant and conductivity of mixtures of isotropic substances," Ann. Phys. 24, 636-664 (1935).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance: How it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469-1470 (1988).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Brockman, A. G. Frutos, and R. M. Corn, "A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging," J. Am. Chem. Soc. 121, 8044-8051 (1999).
[CrossRef]

J. Appl. Phys. (2)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

V. Kabashin, J.-P. Sylvestre, S. Patskovsky, and M. Meunier, "Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films," J. Appl. Phys. 91, 3248-3254 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. F (1)

R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon-polaritons," J. Phys. F 17, 277-287 (1987).
[CrossRef]

Mater. Sci. Eng. B (1)

E. V. Astrova and V. A. Tolmachev, "Effective refractive index and composition of oxidized porous silicon films," Mater. Sci. Eng. B 69, 142-148 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, "Porous silicon as a substrate material for potentiometric biosensors," Meas. Sci. Technol. 7, 26-29 (1996).
[CrossRef]

Opt. Commun. (1)

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Phys. Rev. (1)

L. G. Parratt, "Surface studies of solids by total reflection of X-rays," Phys. Rev. 95, 359-369 (1954).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, "Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations," Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Sens. Actuators B (4)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface plasmon resonance sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).
[CrossRef]

R. C. Jorgenson and S. S. Yee, "Fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299-304 (1983).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Other (3)

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Data may be retrieved athttp://www.sopra-sa.com/more/database.asp.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup for the examination of properties of LAPS and Ge films.

Fig. 2
Fig. 2

SEM images of typical laser-ablated porous Si films with porosity of (a) 50 % and (b) 90 % . The porosity was measured by x-ray specular reflectivity.

Fig. 3
Fig. 3

(a) SPR reflectivity curves for PS films with different porosities. (b) SPR resonant angle as a function of porosity of PS films. Solid curve shows the extrapolation of experimental data.

Fig. 4
Fig. 4

Effective refractive index of laser-ablated porous Si determined from the analysis of experimental data (solid curve with squares). For comparison, the refractive index of porous Si calculated by the Bruggeman EMA theory in water and air is presented by dotted curves.

Fig. 5
Fig. 5

(a) Angular SPR reflectivity curves for different thicknesses of Ge films on SPR-supporting gold. (b) Dependence of the SPR resonant angle on the thickness of Ge. Solid curve represents the extrapolation of experimental data; the dashed line represents the theoretical estimation using Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f m n Si 2 - n eff 2 n Si 2 + 2 n eff 2 + ( 1 f m ) n m 2 - n eff 2 n m 2 + 2 n eff 2 = 0 ,
n eff = 0 n ( z ) e z / δ d z 0 e z / δ d z = n Ge + e d / δ ( n m n Ge ) ,

Metrics