Abstract

Concern about biological terrorism has greatly increased in the 21st century, and correspondingly, so has the need for accurate detection and identification of biological hazards, such as Bacillus anthracis. Optical techniques have been shown to be useful for this purpose. Use of fluorescence lifetimes as a function of emission wavelength for different materials using point- detection methods appears to be an additional viable option. Although the lifetimes range only between 2 and 6  ns, most biological materials tested in this study were distinguishable. A preliminary database has been compiled for use in a possible future detection system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. "Approved tests for the detection of Bacillus anthracis in the Laboratory Response Network," Centers for Disease Control and Prevention, revised 28 January 2001, http://www.bt.cdc.gov/agent/anthrax/lab-testing/approvedlrntests.asp.
  2. R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
    [CrossRef]
  3. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
    [CrossRef]
  4. J. Thomason, "Spectroscopy takes security into the field," Photonics Spectra 38, 83-85 (2004).
  5. R. Gaughan, "Spectroscopy poised to seek terror agents," Photonics Spectra 36, 12-23 (2002).
  6. PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany. Available in the U.S. from Toptica Photonics, Incorporated, 94 North Elm Street, Suite 101, Westfield, Mass. 01085.
  7. J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of Coumarin 153 on solvent," Chem. Phys. Lett. 282, 197-203 (1998).
    [CrossRef]
  8. M. Patting, PicoQuant GmbH (personal communication, 2004).
  9. American Type Culture Collection, P. O. Box 1549, Manassas, Va. 20108.
  10. D. Harris, Quantitative Chemical Analysis, 4th ed. (Freeman, 1995) pp. 621-624.
  11. Greer Laboratories, P. O. Box 800, Lenoir, North Carolina 28645.
  12. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, "Spectrally resolved absolute fluorescence cross sections for bacillus spores," Appl. Opt. 36, 958-967 (1997).
    [CrossRef] [PubMed]
  13. G. Mocz, "Intrinsic fluorescence of proteins and peptides," http://dwb.unl.edu/Teacher/NSF/C08/C08Links/pps99.cryst.bbk.ac.uk/projects/gmocz/fluor.htm.
  14. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
    [CrossRef] [PubMed]
  15. G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

2004 (2)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

J. Thomason, "Spectroscopy takes security into the field," Photonics Spectra 38, 83-85 (2004).

2002 (1)

R. Gaughan, "Spectroscopy poised to seek terror agents," Photonics Spectra 36, 12-23 (2002).

1999 (1)

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

1998 (1)

J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of Coumarin 153 on solvent," Chem. Phys. Lett. 282, 197-203 (1998).
[CrossRef]

1997 (1)

1992 (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Bottiger, J.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Boutou, V.

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Bronk, B. V.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, "Spectrally resolved absolute fluorescence cross sections for bacillus spores," Appl. Opt. 36, 958-967 (1997).
[CrossRef] [PubMed]

Chang, R.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Copeland, R. A.

Courvoisier, F.

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Faris, G. W.

Frey, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

Garvey, D.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Gaughan, R.

R. Gaughan, "Spectroscopy poised to seek terror agents," Photonics Spectra 36, 12-23 (2002).

Harris, D.

D. Harris, Quantitative Chemical Analysis, 4th ed. (Freeman, 1995) pp. 621-624.

Hill, S. C.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Holler, S.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Johnon, M. L.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Kasparian, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Lewis, J. E.

J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of Coumarin 153 on solvent," Chem. Phys. Lett. 282, 197-203 (1998).
[CrossRef]

Maroncelli, M.

J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of Coumarin 153 on solvent," Chem. Phys. Lett. 282, 197-203 (1998).
[CrossRef]

Méjean, G.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Mortelmans, K.

Niles, S.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Pan, Y.-L.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Patting, M.

M. Patting, PicoQuant GmbH (personal communication, 2004).

Pinnick, R. G.

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Salmon, E.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Thomason, J.

J. Thomason, "Spectroscopy takes security into the field," Photonics Spectra 38, 83-85 (2004).

Wolf, J.-P.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Yu, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femto-second tera-watt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of Coumarin 153 on solvent," Chem. Phys. Lett. 282, 197-203 (1998).
[CrossRef]

Field Anal. Chem. Technol. (1)

R. G. Pinnick, S. C. Hill, S. Niles, D. Garvey, Y.-L. Pan, S. Holler, R. Chang, J. Bottiger, and B. V. Bronk, "Real-time measurements of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Photonics Spectra (2)

J. Thomason, "Spectroscopy takes security into the field," Photonics Spectra 38, 83-85 (2004).

R. Gaughan, "Spectroscopy poised to seek terror agents," Photonics Spectra 36, 12-23 (2002).

Proc. Natl. Acad. Sci. USA (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnon, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271-1275 (1992).
[CrossRef] [PubMed]

Other (8)

G. Méjean, F. Courvoisier, J. Kasparian, V. Boutou, E. Salmon, J. Yu, and J.-P. Wolf, The Teramobile, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France, are preparing a paper to be called "Nonlinear aerosol LIDAR for remote detection and identification of bioaerosols in clouds," http://pclasim47.univ-lyonl.fr/publications/wolf_ilrc_aerosol_2004.pdf.

"Approved tests for the detection of Bacillus anthracis in the Laboratory Response Network," Centers for Disease Control and Prevention, revised 28 January 2001, http://www.bt.cdc.gov/agent/anthrax/lab-testing/approvedlrntests.asp.

PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany. Available in the U.S. from Toptica Photonics, Incorporated, 94 North Elm Street, Suite 101, Westfield, Mass. 01085.

M. Patting, PicoQuant GmbH (personal communication, 2004).

American Type Culture Collection, P. O. Box 1549, Manassas, Va. 20108.

D. Harris, Quantitative Chemical Analysis, 4th ed. (Freeman, 1995) pp. 621-624.

Greer Laboratories, P. O. Box 800, Lenoir, North Carolina 28645.

G. Mocz, "Intrinsic fluorescence of proteins and peptides," http://dwb.unl.edu/Teacher/NSF/C08/C08Links/pps99.cryst.bbk.ac.uk/projects/gmocz/fluor.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(A) Schematic of time-resolved fluorescence apparatus; the oscilloscope was replaced by a boxcar integrator for the TI measurements. (B) Details of the excitation and fluorescence-collection optics for the sample configuration used in this study.

Fig. 2
Fig. 2

B. globigii fluorescence decay lifetimes (■) for samples adulterated with nutrient and other contaminants and (□) for >99% vegetative cells. The error bar on the left is representative of typical variations in multiple measurements (see text).

Fig. 3
Fig. 3

Fluorescence lifetimes of (♢) bacteria B. atrophaeus, (□) B. subtilis, and (▴) B. subtilis spizizenii.

Fig. 4
Fig. 4

TI emission spectra of (▴) B. globigii and (□) B. subtilis. The peaks of the curves have been normalized for easy comparison, but no correction has been made for the spectrometer grating response.

Fig. 5
Fig. 5

TI emission spectrum of (□) B. atrophaeus and (▴) B. subtilis spizizenii (normalized).

Fig. 6
Fig. 6

Fluorescence lifetimes of (■) Meadow Oat pollen, (□) Mulberry pollen, (▴) Arizona road dust, and (Δ) cigarette ash.

Fig. 7
Fig. 7

TI emission spectra of (□) Meadow Oat pollen, (♦) Mulberry pollen, and (Δ) B. globigii (normalized).

Fig. 8
Fig. 8

TI emission spectra of (▴) Arizona road dust and (□) cigarette ash (normalized).

Fig. 9
Fig. 9

Fluorescence lifetimes of (□) ammonium nitrate and (♦) ammonium sulfate.

Fig. 10
Fig. 10

TI emission spectra of (□) ammonium nitrate and (♦) ammonium sulfate (normalized).

Fig. 11
Fig. 11

TI emission spectra of (□) B. subtilis and (♦) Mulberry pollen (normalized) replotted.

Tables (1)

Tables Icon

Table 1 List of Samples

Metrics