Abstract

We describe a next-generation monoblock laser capable of a greater than 10  mJ, 1.5μm output at 10  pulses/s  (pps) over broad ambient temperature extremes with no active temperature control. The transmitter design is based on a Nd:YAG laser with a Cr4+ passive Q switch and intracavity potassium titanyl phosphate optical parametric oscillator. To achieve the repetition rate and efficiency goals of this effort, but still have wide temperature capability, the Nd:YAG slab is end pumped with a 12-bar stack of 100  W (each) diode bars. Different techniques for focusing the pump radiation into the 4.25  mm×4 .25   mm end of the slab are compared, including a lensed design, a reflective concentrator, and a lens duct. A wide temperature operation (−20 °C to 50 °C) for each end-pumped configuration is demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, "Monoblock laser for a low-cost, eyesafe, microlaser range finder," Appl. Opt. 39, 2428-2432 (2000).
  2. R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
    [CrossRef]
  3. J. Meister, R. Franzen, C. Apel, and N. Gutknecht, "Multireflection pumping concept for miniaturized diode-pumped solid-state lasers," Appl. Opt. 43, 5864-5869 (2004).
    [CrossRef]
  4. G. Yuan, T. C. Chong, and B. Xu, "YAG laser end and side pumped by a laser diode," Appl. Opt. 37, 3971-3976 (1998).
  5. D. C. Shannon and R. W. Wallace, "High-power Nd:YAG laser end pumped by a cw, 10 mm × 1 μm aperture, 10-W laser-diode bar," Opt. Lett. 16, 318-320 (1991).
  6. H. R. Verdún and T. Chuang, "Efficient TEM00-mode operation of a Nd:YAG laser end pumped by a three-bar high-power diode-laser array," Opt. Lett. 17, 1000-1002 (1992).
  7. L. Turi and T. Juhasz, "High-power longitudinally end-diode-pumped Nd:YLF regenerative amplifier," Opt. Lett. 20, 154-156 (1995).
  8. J. J. Snyder, P. Reichert, and T. M. Baer, "Fast diffraction limited cylindrical microlenses," Appl. Opt. 30, 2743-2747 (1991).
  9. Y. Liao, K. Du, S. Falter, J. Zhang, M. Quade, P. Loosen, and R. Poprawe, "Highly efficient diode-stack, end-pumped Nd:YAG slab laser with symmetrized beam quality," Appl. Opt. 36, 7725-7729 (1997).
  10. W. A. Clarkson and D. C. Hanna, "Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar," Opt. Lett. 21, 869-871 (1996).
  11. R. J. Beach, "Theory and optimization of lens ducts," Appl. Opt. 35, 2005-2015 (1996).
  12. R. Fu, G. Wang, Z. Wang, E. Ba, G. Mu, and X.-H. Hu, "Design of efficient lens ducts," Appl. Opt. 37, 4000-4003 (1998).
  13. G. Feugnet, C. Bussac, C. Larat, M. Schwarz, and J. P. Pocholle, "High-efficiency TEM00 Nd:YVO4 laser longitudinally pumped by a high-power array," Opt. Lett. 20, 157-159 (1995).
  14. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, "Collimation of emissions from a 1-cm aperture tightly arranged, multistripe laser-diode bar with a multiprism array coupling," Appl. Opt. 36, 1875-1878 (1997).
  15. P. F. Moulton, "Pumping with diodes," IEEE Circuits Devices Mag. 7, 36-40 (1991).
    [CrossRef]
  16. B. Zhou, T. J. Kane, G. J. Dixon, and B. L. Byer, "Efficient, frequency-stable laser-diode-pumped Nd:YAG laser," Opt. Lett. 10, 62-64 (1985).
  17. T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 895-912 (1988).
    [CrossRef]
  18. C. W. Trussell, "Diode array end pumped slab laser," U.S. patent 6,914,928 (5 July 2005).

2004 (1)

2003 (1)

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

2000 (1)

1998 (2)

1997 (2)

1996 (2)

1995 (2)

1992 (1)

1991 (3)

1988 (1)

T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 895-912 (1988).
[CrossRef]

1985 (1)

Apel, C.

Ba, E.

Baer, T. M.

Barr, D. N.

Beach, R. J.

Bussac, C.

Byer, B. L.

Byer, R. L.

T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 895-912 (1988).
[CrossRef]

Chiba, K.

Chong, T. C.

Chuang, T.

Clarkson, W. A.

Devitt, N. M.

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Dixon, G. J.

Du, K.

Falter, S.

Fan, T. Y.

T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 895-912 (1988).
[CrossRef]

Feugnet, G.

Franzen, R.

Fu, R.

Gutknecht, N.

Halford, C.

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Hanna, D. C.

Hu, X.-H.

Jacobs, E. L.

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Juhasz, T.

Kane, T. J.

Kobayashi, T.

Larat, C.

Lei, J. S.

Liao, Y.

Loosen, P.

Maurer, T.

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Meister, J.

Moulton, P. F.

P. F. Moulton, "Pumping with diodes," IEEE Circuits Devices Mag. 7, 36-40 (1991).
[CrossRef]

Mu, G.

Nettleton, J. E.

Pocholle, J. P.

Poprawe, R.

Quade, M.

Reichert, P.

Saito, Y.

Schilling, B. W.

Schwarz, M.

Shannon, D. C.

Snyder, J. J.

Turi, L.

Verdún, H. R.

Vollmerhausen, R. H.

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Wallace, R. W.

Wang, G.

Wang, Z.

Xu, B.

Yamaguchi, S.

Yuan, G.

Zhang, J.

Zhou, B.

Appl. Opt. (8)

IEEE Circuits Devices Mag. (1)

P. F. Moulton, "Pumping with diodes," IEEE Circuits Devices Mag. 7, 36-40 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 895-912 (1988).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

R. H. Vollmerhausen, E. L. Jacobs, N. M. Devitt, T. Maurer, and C. Halford, "Modeling the target acquisition performance of laser-range-gated imagers," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE 5076, 101-111 (2003).
[CrossRef]

Other (1)

C. W. Trussell, "Diode array end pumped slab laser," U.S. patent 6,914,928 (5 July 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Absorption coefficient of 1 % doped Nd : YAG versus wavelength.

Fig. 2
Fig. 2

Beer's Law for Nd : YAG shows absorption length required to absorb N % of pump radiation at different wavelengths for N = 60 , 70, 80, 90.

Fig. 3
Fig. 3

Diagram of the monoblock laser design.

Fig. 4
Fig. 4

(Color online) Monoblock laser.

Fig. 5
Fig. 5

Photograph of 12-bar pump diode mounted on aluminum heat sink shows thermocouple location.

Fig. 6
Fig. 6

(Color online) Pump-diode wavelength versus temperature for two diode arrays. Data taken under constant current ( 100   A ) and constant pulse width ( 200 μ s ) condition.

Fig. 7
Fig. 7

(Color online) Pump diode pulse energy versus temperature for two diode arrays. Data taken under constant current ( 100   A ) and constant pulse width ( 200 μ s ) condition.

Fig. 8
Fig. 8

(Color online) Ray trace of end-pumping configuration 1 (lensed case) showing pump diodes: (a) fast axis and (b) slow axis.

Fig. 9
Fig. 9

Drawing of the alignment fixture with lens aligned and partially lensed laser-diode array.

Fig. 10
Fig. 10

Simple reflective concentrator design.

Fig. 11
Fig. 11

(Color online) Output energy versus temperature (right and top axes) for side-pumped configuration along with energy absorbed versus diode wavelength (left and bottom axes) in 8.5   mm of bulk Nd : YAG according to Beer's law.

Fig. 12
Fig. 12

(Color online) Buildup time versus temperature for three end-pumped configurations.

Fig. 13
Fig. 13

(Color online) Output pulse energy versus temperature for three end-pumped configurations.

Fig. 14
Fig. 14

1.06 μ m fluorescence due to end pumping with the lensed diode array at 12 ° C .

Fig. 15
Fig. 15

1.06 μ m fluorescence due to end pumping with the lensed diode array at 30 ° C .

Fig. 16
Fig. 16

1 .06   μ m fluorescence due to end pumping with the bare diode array at 14 ° C coupled into a Nd : YAG rod by reflective concentrator.

Fig. 17
Fig. 17

1.06 μ m fluorescence due to end pumping with the bare diode array at 32   ° C coupled into a Nd : YAG rod by reflective concentrator.

Fig. 18
Fig. 18

(Color online) Optical-to-optical efficiency versus temperature for three end-pumped configurations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E p = E d ( Δ t 200 ) ,

Metrics