Abstract

Surface-relief gratings with submicrometer modulation periods were ablated by F2-laser radiation in thin metal-oxide films to produce resonant grating waveguide structures. For 150  nm films of Nb2O 5, grating amplitudes in the range of 5–50  nm could be reproducibly excised with a controlled exposure of a laser energy density and a number of pulses within a narrow processing window. Resonant coupling of 800   nm ultrashort pulsed laser light into the resulting grating waveguide structure is verified with reflection and transmission spectra and satisfactorily modeled by coupled-mode theory. The laser-fabricated grating waveguides are attractive for high damage threshold reflectors and biosensor applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
    [CrossRef]
  2. T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
    [CrossRef]
  3. S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
    [CrossRef]
  4. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
    [CrossRef]
  5. P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996).
    [CrossRef]
  6. H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
    [CrossRef]
  7. P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.
  8. R. Magnusson and S. S. Wang, "Transmission bandpass guided-mode resonance filters," Appl. Opt. 34, 8106-8109 (1995).
    [CrossRef] [PubMed]
  9. D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams," J. Opt. Soc. Am. A 18, 2109-2120 (2001).
    [CrossRef]
  10. T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
    [CrossRef]
  11. S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
    [CrossRef]
  12. D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
    [CrossRef] [PubMed]
  13. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  14. J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
    [CrossRef]
  15. S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
    [CrossRef]
  16. P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).
  17. M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999).
    [CrossRef]
  18. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
    [CrossRef]
  19. F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
    [CrossRef]
  20. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, "Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers," J. Opt. Soc. Am. B 21, 1127-1136 (2004).
    [CrossRef]
  21. A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30, 1683-1685 (2005).
    [CrossRef] [PubMed]
  22. D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Design considerations for narrow-band dielectric resonant grating reflection filters of finite length," J. Opt. Soc. Am. A 17, 1241-1249 (2000).
    [CrossRef]

2005 (1)

2004 (3)

C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, "Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers," J. Opt. Soc. Am. B 21, 1127-1136 (2004).
[CrossRef]

T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
[CrossRef]

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

2003 (3)

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

2001 (2)

D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams," J. Opt. Soc. Am. A 18, 2109-2120 (2001).
[CrossRef]

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

2000 (2)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Design considerations for narrow-band dielectric resonant grating reflection filters of finite length," J. Opt. Soc. Am. A 17, 1241-1249 (2000).
[CrossRef]

1999 (4)

M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999).
[CrossRef]

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1996 (2)

P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

1995 (1)

1991 (1)

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Alexiev, U.

Anselmetti, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Bader, M. A.

Beckley, K.

P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.

Beinhorn, F.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Bhattacharya, A. K.

M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999).
[CrossRef]

Bor, Z.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Budach, W.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Burghardt, B.

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Callahan, D. L.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Chen, K.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Chen, K. P.

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Chibout, S.-D.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Débarre, D.

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

Dunn, S. C.

Dyer, P. E.

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

Edlinger, J.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

Friesem, A. A.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Fukumura, H.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Funk, D. J.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Gerber, T.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

Goto, M.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Hempstead, M.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

Herman, P. R.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.

Ihlemann, J.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996).
[CrossRef]

Jacob, D. K.

Kappel, C.

Karnakis, D. M.

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

Katchalski, T.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
[CrossRef]

Konovalov, I.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Krishna, M. Ghanashyam

M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999).
[CrossRef]

Lazare, S.

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

Li, J.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

Lippert, T.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Magnusson, R.

Maisenhölder, B.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Marjoribanks, R. S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Marowsky, G.

A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, "Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures," Opt. Lett. 30, 1683-1685 (2005).
[CrossRef] [PubMed]

C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, "Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers," J. Opt. Soc. Am. B 21, 1127-1136 (2004).
[CrossRef]

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Moharam, M. G.

Müller, S.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

Ness, S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Neuschäfer, D.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

Oesterlin, P.

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Oettl, A.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Pereira, S.

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

Phillips, H. M.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Pissadakis, S.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

Potyrailo, R. A.

P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.

Puschmann, S.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

Reekie, L.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sauerbrey, R.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Schäfer, D.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Selle, A.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Simon, P.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996).
[CrossRef]

Sipe, J. E.

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

Soria, S.

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

Szabo, G.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

Teitelbaum, E.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
[CrossRef]

Tokarev, V. N.

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

Wang, S. S.

Wanke, C.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

Wei, M.

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

Wei, X. M.

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Weisbuch, F.

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

Wilkinson, J. S.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

Winkler, K.

Wokaun, A.

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

Zervas, M. N.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

Zhang, J.

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

Appl. Opt. (1)

Appl. Phys. A (5)

J. Ihlemann, S. Müller, S. Puschmann, D. Schäfer, M. Wei, J. Li, and P. R. Herman, "Fabrication of submicron gratings in fused silica by F2-laser ablation," Appl. Phys. A 76, 751-753 (2003).
[CrossRef]

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, "High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides," Appl. Phys. A 79, 1093-1096 (2004).
[CrossRef]

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, and J. S. Wilkinson, "Ablated gratings on borosilicate glass by 193-nm excimer laser radiation," Appl. Phys. A A69, S739-S741 (1999).
[CrossRef]

P. Simon and J. Ihlemann, "Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses," Appl. Phys. A 63, 505-508 (1996).
[CrossRef]

F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters," Appl. Phys. A 76, 613-620 (2003).
[CrossRef]

Appl. Phys. B (1)

S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, "Loss-tolerant, narrow-band reflector in the UV using a grating-waveguide structure," Appl. Phys. B 75, 635-640 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, and Z. Bor, "Sub-100 nm lines produced by direct laser ablation in polyimide," Appl. Phys. Lett. 58, 2761-2763 (1991).
[CrossRef]

T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, and M. Goto, "Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm," Appl. Phys. Lett. 75, 1018-1020 (1999).
[CrossRef]

T. Katchalski, E. Teitelbaum, and A. A. Friesem, "Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures," Appl. Phys. Lett. 84, 472-474 (2004).
[CrossRef]

Appl. Surf. Sci. (3)

P. E. Dyer, R. J. Farley, R. Giedl, and D. M. Karnakis, "Excimer laser ablation of polymers and glasses for grating fabrication," Appl. Surf. Sci. 96-98, 537-549 (1996).
[CrossRef]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, "Submicron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation," Appl. Surf. Sci. 138-139, 107-110 (1999).
[CrossRef]

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, "Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers," Appl. Surf. Sci. 154-155, 577-586 (2000).
[CrossRef]

Biosens. Bioelectron. (1)

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18, 489-497 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Int. J. Mod. Phys. B (1)

M. Ghanashyam Krishna and A. K. Bhattacharya, "Thickness and oxygen pressure dependent optical properties of niobium oxide thin films," Int. J. Mod. Phys. B 13, 411-418 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (2)

P. R. Herman, K. P. Chen, X. M. Wei, J. Zhang, J. Ihlemann, D. Schäfer, G. Marowsky, P. Oesterlin, and B. Burghardt, "F2 lasers: high-resolution optical processing system for shaping photonic components," in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. C. Gower, H. Helvajian, K. Sugioka, and J. J. Dubowski, eds., Proc. SPIE 4274, 149-157 (2001).

P. R. Herman, K. Beckley, and R. A. Potyrailo, "Vacuum-ultraviolet holographic gratings etched by a single F2 laser pulse," in Conference on Lasers and Electro-Optics, Vol. 8 of the 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper CFI2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) AFM profiles of a 780   nm period grating formed by F 2 - laser ablation in a thin Nb 2 O 5 film: (a) 0.26 J / cm 2 and 100 pulses, near-trapezoid shape; (b) 0.27 J / cm 2 and 200 pulses, two distinct amplitude peaks; (c) 0.30 J / cm 2 and 200 pulses in central exposure region; and (d) 0.30 J / cm 2 and 20 pulses in exposure boundary.

Fig. 2
Fig. 2

Grating modulation amplitude as a function of number of F 2 - laser pulses for 150   nm thick Nb 2 O 5 film. Single-pulse fluence values are shown in the legend.

Fig. 3
Fig. 3

Scanning electron microscope image of an F 2 - laser generated 780   nm period grating with 42   nm amplitude in a 150   nm Nb 2 O 5 film.

Fig. 4
Fig. 4

Reflection and transmission spectra (42° probe angle) of a F 2 - laser ablated grating in a 150   μm thick Nb 2 O 5 film with a 42   nm grating amplitude: experimental data (solid curves) and theoretical fit (dashed curve).

Fig. 5
Fig. 5

Measured reflection maxima (circles) and transmission minima (squares) and their theoretical representations (dashed curves) at wavelength resonance as a function of grating modulation depth.

Metrics