Abstract

We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results—including losses associated with the metal coating—which can then be used as design rules.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
    [CrossRef]
  2. S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
    [CrossRef]
  3. P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
    [CrossRef]
  4. G. Kaupp and A. Herrmann, "Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals," Ultramicroscopy 71, 383-388 (1998).
    [CrossRef]
  5. G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
    [CrossRef]
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
    [CrossRef] [PubMed]
  7. P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
    [CrossRef]
  8. M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
    [CrossRef]
  9. G. Valaskovic, M. Holton, and G. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt. 34, 1215-1228 (1995).
    [CrossRef] [PubMed]
  10. R. Scarmozzino and J. R. M. Osgood, "Comparison of finite difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated optics applications," J. Opt. Soc. Am. A 8, 724-731 (1991).
    [CrossRef]
  11. F. Gonthier, A. Henault, S. Lacroix, R. Black, and J. Bures, "Mode coupling in nonuniform fibres: comparison between coupled-mode theory and finite-difference beam-propagation method simulations," J. Opt. Soc. Am. B 8, 416-421 (1991).
    [CrossRef]
  12. K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003).
    [CrossRef] [PubMed]
  13. H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
    [CrossRef] [PubMed]
  14. M. Tanaka and K. Tanaka, "Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe," J. Opt. Soc. Am. A 18, 919-925 (2001).
    [CrossRef]
  15. P. Moar, "An analysis of tapered optical fibre devices for scanning near field optical microscope applications," Ph.D. dissertation (Australian National University, 2000).
  16. P. Moar, F. Ladouceur, and L. Cahill, "Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes," Appl. Opt. 39, 1966-1972 (2000).
    [CrossRef]
  17. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  18. J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
    [CrossRef]
  19. J. Love, "Spot-size, adiabaticity and diffraction in tapered fibres," Electron. Lett. 23, 993-994 (1987).
    [CrossRef]
  20. Note that it is inappropriate to use the refractive index in the following development because it assumes a complex value in the metal. Although the refractive index is an accepted description for lossless or low-loss fibers, strictly speaking it is the dielectric constant that is the correct physical quantity.
  21. P. Moar and F. Ladouceur, "Numerical analysis of scanning near field optical microscopes," in Australian Conference on Optical Fibre Technology (ACOFT 98), postdeadline (1998).
  22. P. Diament, Wave Transmission and Fiber Optics (Macmillan, 1990).
  23. K. Petermann, "Fundamental mode microbending loss in graded-index and W-fibres," Opt. Quantum Electron. 9, 167-175 (1977).
    [CrossRef]
  24. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984).
    [CrossRef]
  25. N. Kapany and J. Burke, Optical Waveguides (Academic, 1972).
  26. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
    [CrossRef]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

2003 (1)

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003).
[CrossRef] [PubMed]

2001 (2)

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

M. Tanaka and K. Tanaka, "Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe," J. Opt. Soc. Am. A 18, 919-925 (2001).
[CrossRef]

2000 (2)

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, F. Ladouceur, and L. Cahill, "Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes," Appl. Opt. 39, 1966-1972 (2000).
[CrossRef]

1999 (1)

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

1998 (2)

G. Kaupp and A. Herrmann, "Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals," Ultramicroscopy 71, 383-388 (1998).
[CrossRef]

G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
[CrossRef]

1997 (2)

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

1995 (2)

P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

G. Valaskovic, M. Holton, and G. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt. 34, 1215-1228 (1995).
[CrossRef] [PubMed]

1994 (1)

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

1991 (4)

F. Gonthier, A. Henault, S. Lacroix, R. Black, and J. Bures, "Mode coupling in nonuniform fibres: comparison between coupled-mode theory and finite-difference beam-propagation method simulations," J. Opt. Soc. Am. B 8, 416-421 (1991).
[CrossRef]

R. Scarmozzino and J. R. M. Osgood, "Comparison of finite difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated optics applications," J. Opt. Soc. Am. A 8, 724-731 (1991).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

1987 (1)

J. Love, "Spot-size, adiabaticity and diffraction in tapered fibres," Electron. Lett. 23, 993-994 (1987).
[CrossRef]

1984 (1)

1977 (1)

K. Petermann, "Fundamental mode microbending loss in graded-index and W-fibres," Opt. Quantum Electron. 9, 167-175 (1977).
[CrossRef]

Chilwell, J.

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Black, R.

F. Gonthier, A. Henault, S. Lacroix, R. Black, and J. Bures, "Mode coupling in nonuniform fibres: comparison between coupled-mode theory and finite-difference beam-propagation method simulations," J. Opt. Soc. Am. B 8, 416-421 (1991).
[CrossRef]

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

Bures, J.

Burke, J.

N. Kapany and J. Burke, Optical Waveguides (Academic, 1972).

Cahill, L.

P. Moar, F. Ladouceur, and L. Cahill, "Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes," Appl. Opt. 39, 1966-1972 (2000).
[CrossRef]

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Diament, P.

P. Diament, Wave Transmission and Fiber Optics (Macmillan, 1990).

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Gonthier, F.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

F. Gonthier, A. Henault, S. Lacroix, R. Black, and J. Bures, "Mode coupling in nonuniform fibres: comparison between coupled-mode theory and finite-difference beam-propagation method simulations," J. Opt. Soc. Am. B 8, 416-421 (1991).
[CrossRef]

Hafner, C.

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Henault, A.

Henry, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

Herrmann, A.

G. Kaupp and A. Herrmann, "Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals," Ultramicroscopy 71, 383-388 (1998).
[CrossRef]

Hodgkinson, I.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Holton, M.

Huntington, S.

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

Islam, M.

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Kambe, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

Kapany, N.

N. Kapany and J. Burke, Optical Waveguides (Academic, 1972).

Katsifolis, J.

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Kaupp, G.

G. Kaupp and A. Herrmann, "Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals," Ultramicroscopy 71, 383-388 (1998).
[CrossRef]

Khao, A.

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Lacroix, S.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

F. Gonthier, A. Henault, S. Lacroix, R. Black, and J. Bures, "Mode coupling in nonuniform fibres: comparison between coupled-mode theory and finite-difference beam-propagation method simulations," J. Opt. Soc. Am. B 8, 416-421 (1991).
[CrossRef]

Ladouceur, F.

P. Moar, F. Ladouceur, and L. Cahill, "Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes," Appl. Opt. 39, 1966-1972 (2000).
[CrossRef]

P. Moar and F. Ladouceur, "Numerical analysis of scanning near field optical microscopes," in Australian Conference on Optical Fibre Technology (ACOFT 98), postdeadline (1998).

Lo, K.

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

Love, J.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

J. Love, "Spot-size, adiabaticity and diffraction in tapered fibres," Electron. Lett. 23, 993-994 (1987).
[CrossRef]

W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Mickel, S.

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Moar, P.

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, F. Ladouceur, and L. Cahill, "Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes," Appl. Opt. 39, 1966-1972 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

P. Moar and F. Ladouceur, "Numerical analysis of scanning near field optical microscopes," in Australian Conference on Optical Fibre Technology (ACOFT 98), postdeadline (1998).

P. Moar, "An analysis of tapered optical fibre devices for scanning near field optical microscope applications," Ph.D. dissertation (Australian National University, 2000).

Morrison, G.

Mulvaney, P.

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

Nakamura, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

Nishi, K.

G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
[CrossRef]

Novotny, L.

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Nugent, K.

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

Ohtsu, M.

G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
[CrossRef]

Osgood, J. R. M.

Petermann, K.

K. Petermann, "Fundamental mode microbending loss in graded-index and W-fibres," Opt. Quantum Electron. 9, 167-175 (1977).
[CrossRef]

Roberts, A.

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

Said, A.

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Saiki, G. T.

G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
[CrossRef]

Saiki, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

Salathe, R.

P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Sato, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

Sawada, K.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

Scarmozzino, R.

Snyder, W.

W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Stewart, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003).
[CrossRef] [PubMed]

M. Tanaka and K. Tanaka, "Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe," J. Opt. Soc. Am. A 18, 919-925 (2001).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003).
[CrossRef] [PubMed]

M. Tanaka and K. Tanaka, "Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe," J. Opt. Soc. Am. A 18, 919-925 (2001).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Vail, C.

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Valaskovic, G.

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Islam, A. Khao, A. Said, S. Mickel, and C. Vail, "High efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy," Appl. Phys. Lett. 71, 2886-2888 (1997).
[CrossRef]

Electron. Lett. (1)

J. Love, "Spot-size, adiabaticity and diffraction in tapered fibres," Electron. Lett. 23, 993-994 (1987).
[CrossRef]

IEE Proc. J. Optoelectron. (1)

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices Part 1: adiabaticity criteria," IEE Proc. J. Optoelectron. 138, 343-355 (1991).
[CrossRef]

IEE Proc. Optoelectron. (1)

S. Huntington, J. Katsifolis, P. Moar, L. Cahill, K. Nugent, and A. Roberts, "Evanescent field characterization of tapered optical fiber sensors in liquid environments using near-field scanning optical microscopy and atomic force microscopy," IEE Proc. Optoelectron. 146, 239-243 (2000).
[CrossRef]

J. Appl. Phys. (2)

P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, and K. Nugent, "Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, and P. Mulvaney, "Field characterization for a D-shaped optical fiber using scanning near field optical microscopy," J. Appl. Phys. 82, 510-513 (1997).
[CrossRef]

J. Microsc. (2)

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003).
[CrossRef] [PubMed]

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, "Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation," J. Microsc. 202, 50-52 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

G. T. Saiki, K. Nishi, and M. Ohtsu, "Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots," Jpn. J. Appl. Phys. Part 1 37, 1638-1642 (1998).
[CrossRef]

Opt. Quantum Electron. (1)

K. Petermann, "Fundamental mode microbending loss in graded-index and W-fibres," Opt. Quantum Electron. 9, 167-175 (1977).
[CrossRef]

Phys. Rev. E (1)

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffractions barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy (2)

P. Hoffmann, B. Dutoit, and R. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

G. Kaupp and A. Herrmann, "Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals," Ultramicroscopy 71, 383-388 (1998).
[CrossRef]

Other (7)

W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

P. Moar, "An analysis of tapered optical fibre devices for scanning near field optical microscope applications," Ph.D. dissertation (Australian National University, 2000).

N. Kapany and J. Burke, Optical Waveguides (Academic, 1972).

Note that it is inappropriate to use the refractive index in the following development because it assumes a complex value in the metal. Although the refractive index is an accepted description for lossless or low-loss fibers, strictly speaking it is the dielectric constant that is the correct physical quantity.

P. Moar and F. Ladouceur, "Numerical analysis of scanning near field optical microscopes," in Australian Conference on Optical Fibre Technology (ACOFT 98), postdeadline (1998).

P. Diament, Wave Transmission and Fiber Optics (Macmillan, 1990).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic of a near-field probe made from an optical fiber highlighting the untapered and tapered sections of the probe.

Fig. 2
Fig. 2

Diagram of the SNOM probe highlighting the focusing of the electric field as a result of confinement because of the clad–metal interface. The location of minimum spot size because of the cladding-air interface for an uncoated probe is included.

Fig. 3
Fig. 3

Schematic detailing the main geographic features of the linear-tapered SNOM probes that are used as the parameters for the simulations (diagram not to scale).

Fig. 4
Fig. 4

Cross section of the real part of the refractive index profile used to represent the SNOM probe, where ρ co and ρ cl are the core and cladding radii of the fiber, respectively, and σ m is the thickness of the metal layer (diagram not to scale).

Fig. 5
Fig. 5

Optical power contained within the probe versus the distance from the probe tip for a cone half-angle of 10°. The solid curve is for the chemically etched probe, and the dashed curve is for the heat-drawn probe.

Fig. 6
Fig. 6

Three-dimensional electric field intensity profile within the last 5 μ m of the probe tip for a chemically etched probe with a cone half-angle of 10°.

Fig. 7
Fig. 7

Three-dimensional electric field intensity profile within the last 5 μ m of the probe tip for a heat-drawn probe with a cone half-angle of 10°.

Fig. 8
Fig. 8

Transmission efficiency versus aperture diameter: ∗, 500 μ m taper; + , 1   mm taper.

Fig. 9
Fig. 9

Plot of the delineation criteria value of Ω cl versus waveguide-cladding parameter V cl . Where Ω cl is termed as the local taper angle. For any angle beneath the curve, the taper is approximately adiabatic and for any angle above the curve the taper is nonadiabatic. The solid curve is for chemically etched probes and the dashed curve is for heat-drawn probes. Parameter values used to produce these plots are those presented in Table 2.

Fig. 10
Fig. 10

Plots of normalized spot-size ω / ρ co versus waveguide-cladding parameter V cl . ρ co are fixed to the pretaper value of 2.9 μ m . The solid curve is for the heat-drawn probe and the dashed curve is for the chemically etched probe, for case 1. Figure 11 is a zoom of this plot over the magnified range 1 < V cl < 20 .

Fig. 11
Fig. 11

Plot of the normalized spot-size ω / ρ co versus waveguide-cladding parameter V cl for heat-drawn probes. The solid line is for case 2 and the dashed curve is for case 1. This is a zoom of Fig. 10 over the magnified range 1 < V cl < 20 .

Fig. 12
Fig. 12

Cross section of the symmetric refractive index profile of the SNOM probe in slab geometry. Re denotes real part of the refractive index profile, n m is the real part of the refractive index of the metal, n co is the refractive index of the core, and n air is the refractive index of air. The numbering scheme shown and its applicability to the numerical method utilized for modal analysis are explained in Subsection 5.C.

Fig. 13
Fig. 13

Plots of n eff ( r ) (solid curve) and n eff ( i ) (dashed curve) of the fundamental mode versus the imaginary part of the metal's refractive index ( n m ( i ) ) (a) over the range 0 n m ( i ) 7 and (b) over the magnified subrange 0 n m ( i ) 0.5 . The dot–dashed line is for the numerical evaluation of n eff ( i ) = η m n m ( i ) .

Fig. 14
Fig. 14

Plots of n eff ( r ) (solid curve) and n eff ( i ) (dashed curve) of the effective index for the first odd mode versus the imaginary part of the metal's refractive index ( n m ( i ) ) (a) over the range 0 n m ( i ) 7 and (b) over the magnified subrange 0 n m ( i ) 0.5 .

Fig. 15
Fig. 15

Plots of the real [ n eff ( r ) solid curve] and the imaginary [ n eff ( i ) dashed curve] parts of the effective index for the fundamental mode versus core half-width ρ (horizontal axis is in micrometers) for (a) the range 0.5 μ m ρ 1.5 μ m and (b) 0.0001 μ m ρ 0.5 μ m .

Fig. 16
Fig. 16

Plot of the real [ n eff ( r ) solid curve] and imaginary [ n eff ( i ) dashed curve] parts of the effective index for the first odd mode versus core half-width ρ (horizontal axis is in micrometers) for (a) the range 0.5 μ m ρ 1.5 μ m and (b) 0.0001 μ m ρ 0.5 μ m .

Fig. 17
Fig. 17

Plots of the real [ n eff ( r ) solid curve] and imaginary [ n eff ( i ) dashed curve] parts of the effective index for the fundamental mode versus n m ( i ) for the simulation parameters values shown in Table 7.

Fig. 18
Fig. 18

Plot of power loss versus core half-width ρ. The fundamental mode power loss plot is depicted by the solid curve and the first odd mode is depicted by the dashed curve.

Fig. 19
Fig. 19

Real part of n 2 ( x ) versus distance x for the SNOM probe. The band of horizontal lines, labeled [ n eff ( r ) ] 2 , are modal solutions of the waveguide structure.

Tables (7)

Tables Icon

Table 1 FD-BPM Simulation Parameters for a Heat-Drawn Probe With a Cone Half-Angle of 10°

Tables Icon

Table 2 Table of Parameter Values for an Adiabatic Taper Probe

Tables Icon

Table 3 Parameter Values for Tracking the Behavior of the Modal Solutions in Relation to the Imaginary Component of the Metal's Refractive Index

Tables Icon

Table 4 Values of the Effective Refractive Index for the First Two Supported Modes Using the Perfect Conductor Assumption

Tables Icon

Table 5 Values of the Effective Refractive Index for the First Two Supported Nodes

Tables Icon

Table 6 Parameter Values for Tracking the Behavior of the Modal Solutions in Relation to the Waveguide Half-Width ρ

Tables Icon

Table 7 Parameter Values for Tracking the Behavior of the Modal Solutions in Relation to the Imaginary Part of the Metal's Refractive Index n m ( i )

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n m = n m ( r ) + in m ( i ) ,
tan ( γ ) = tan ( Φ ) ρ co / ρ cl ,
β = β ( r ) + i β ( i ) ,
n eff = n eff ( r ) + in eff ( i ) ,
n eff ( i ) = η m n m ( i ) ,
n 2 = ( n m ( r )   +   i n m ( i ) ) 2
=   [ ( n m ( r ) ) 2 ( n m ( i ) ) 2 ] + i 2 n m ( r ) n m ( i ) .
V ( r ) = k ρ { n co 2 [ ( n m ( r ) ) 2 ( n m ( i ) ) 2 ] } 1 / 2 .
P ( z ) = P ( 0 ) e - 2 β ( i ) z ,
P ( z ) = P ( 0 ) exp [ 2 0 z β ( i ) ( z ) d z ] ,
P ( z ) = P ( 0 ) exp ( 2 k n eff ( i ) z ) .
= 10 log 10 [ P ( z ) P ( 0 ) ]
= 64.2 n eff ( i ) dB / μ m .
ϵ r = { [ n m ( r ) ] 2 [ n m ( i ) ] 2 } i [ 2 n m ( i ) n m ( r ) ] .

Metrics