Abstract

We demonstrate a 20 GHz spectrum analyzer with 1 MHz resolution and >40 dB dynamic range using spectral-hole-burning (SHB) crystals, which are cryogenically cooled crystal hosts lightly doped with rare-earth ions. We modulate a rf signal onto an optical carrier using an electro-optic intensity modulator to produce a signal beam modulated with upper and lower rf sidebands. Illuminating SHB crystals with modulated beams excites only those ions resonant with corresponding modulation frequencies, leaving holes in the crystal's absorption profile that mimic the modulation power spectrum and persist for up to 10 ms. We determine the spectral hole locations by probing the crystal with a chirped laser and detecting the transmitted intensity. The transmitted intensity is a blurred-out copy of the power spectrum of the original illumination as mapped into a time-varying signal. Scaling the time series associated with the transmitted intensity by the instantaneous chirp rate yields the modulated beam's rf power spectrum. The homogeneous linewidth of the rare-earth ions, which can be <100 kHz at cryogenic temperatures, limits the fundamental spectral resolution, while the medium's inhomogeneous linewidth, which can be >20 GHz, determines the spectral bandwidth.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Engelson, Modern Spectrum Analyzer Theory and Applications (Artech House, 1984).
  2. Spectrum Analysis Basics, Application Note 150 (Agilent, 2004), www.agilent.com.
  3. Fundamentals of Real-Time Spectrum Analysis, Primer, Tektronix (2004), www.tektronix.com.
  4. J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).
  5. T. Turpin, "Spectrum analysis using optical processing," Proc. IEEE 69, 80-92 (1981).
  6. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
    [CrossRef]
  7. R. M. Macfarlane, "Direct process thermal line broadening in Tm:YAG," J. Lumin. 85, 181-186 (2000).
    [CrossRef]
  8. T. W. Mossberg, "Time-domain frequency-selective optical data storage," Opt. Lett. 7, 77-79 (1982).
  9. Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
    [CrossRef]
  10. K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
    [CrossRef]
  11. F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004).
    [CrossRef]
  12. K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
    [CrossRef]
  13. M. Tian, R. Reibel, and W. R. Babbitt, "Demonstration of optical coherent transient true-time delay at 4 Gbits/s," Opt. Lett. 26, 1143-1145 (2001).
  14. V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
    [CrossRef]
  15. R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.
  16. M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
    [CrossRef]
  17. I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
    [CrossRef]
  18. M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
    [CrossRef]
  19. V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
    [CrossRef]
  20. G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
    [CrossRef]
  21. F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
    [CrossRef]
  22. D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
    [CrossRef]
  23. K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
    [CrossRef]
  24. M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).
  25. P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, 1991).
  26. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  27. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).
  28. M. A. Poletti, "Linearly swept frequency measurements and the Wigner-Ville distribution," in Time-Frequency Signal Analysis: Methods and Applications, B.Boashash, ed., (Longman Chesire, 1992), Chap. 19, pp. 424-444.
  29. M. A. Poletti, "Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution," J. Audio Eng. Soc. 36, 457-468 (1988).
  30. T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
    [CrossRef]
  31. G. Hok, "Response of linear resonant systems to excitation of a frequency varying linearly with time," J. Appl. Phys. 19, 242-250 (1948).
    [CrossRef]
  32. W. R. Babbitt and R. Krishna Mohan, Spectrum Lab, Department of Physics, Montana State University, Bozeman, Montana 59717 (personal communication, 2005).
  33. J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
    [CrossRef]
  34. S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
    [CrossRef]
  35. M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
    [CrossRef]
  36. G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990).
    [CrossRef]
  37. G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
    [CrossRef]
  38. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
    [CrossRef]
  39. A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991).
    [CrossRef]
  40. G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
    [CrossRef]
  41. C. J. Karlsson and F. A. A. Olsson, "Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance," Appl. Opt. 38, 3376-3386 (1999).
  42. G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
    [CrossRef]
  43. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
    [CrossRef]
  44. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
    [CrossRef]
  45. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  46. K. S. Repasky and J. L. Carlsten, "Simple method for measuring frequency chirps with a Fabry-Perot interferometer," Appl. Opt. 39, 5500-5504 (2000).
  47. K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).
  48. F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.
  49. F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
    [CrossRef]
  50. B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
    [CrossRef]

2006 (1)

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

2005 (6)

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
[CrossRef]

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
[CrossRef]

2004 (7)

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
[CrossRef]

2002 (2)

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

2001 (1)

2000 (4)

R. M. Macfarlane, "Direct process thermal line broadening in Tm:YAG," J. Lumin. 85, 181-186 (2000).
[CrossRef]

K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
[CrossRef]

K. S. Repasky and J. L. Carlsten, "Simple method for measuring frequency chirps with a Fabry-Perot interferometer," Appl. Opt. 39, 5500-5504 (2000).

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

1999 (1)

1998 (1)

K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
[CrossRef]

1997 (1)

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

1992 (2)

G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
[CrossRef]

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

1991 (1)

A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991).
[CrossRef]

1990 (2)

G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990).
[CrossRef]

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

1989 (1)

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

1988 (1)

M. A. Poletti, "Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution," J. Audio Eng. Soc. 36, 457-468 (1988).

1985 (1)

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef]

1984 (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1982 (1)

1981 (1)

T. Turpin, "Spectrum analysis using optical processing," Proc. IEEE 69, 80-92 (1981).

1979 (1)

J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).

1948 (1)

G. Hok, "Response of linear resonant systems to excitation of a frequency varying linearly with time," J. Appl. Phys. 19, 242-250 (1948).
[CrossRef]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Anderson, J. L.

J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).

Armagan, G.

G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
[CrossRef]

Babbitt, W. R.

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
[CrossRef]

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

M. Tian, R. Reibel, and W. R. Babbitt, "Demonstration of optical coherent transient true-time delay at 4 Gbits/s," Opt. Lett. 26, 1143-1145 (2001).

K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
[CrossRef]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

W. R. Babbitt and R. Krishna Mohan, Spectrum Lab, Department of Physics, Montana State University, Bozeman, Montana 59717 (personal communication, 2005).

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

Bartolo, B. D.

G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Böttger, T.

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

Braker, B.

F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
[CrossRef]

Braker, B. M.

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

Bregman, J.

F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.

K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).

Bretenaker, F.

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

Brewer, R. G.

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef]

Brown, H. B.

J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).

Buoncristiani, A. M.

G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
[CrossRef]

Burr, G. W.

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

Carlsten, J. L.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

K. S. Repasky and J. L. Carlsten, "Simple method for measuring frequency chirps with a Fabry-Perot interferometer," Appl. Opt. 39, 5500-5504 (2000).

Chang, T.

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Chen, A. T.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Chen, D. T.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Cole, Z.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Colice, M.

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
[CrossRef]

M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Cone, R. L.

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990).
[CrossRef]

Crozatier, V.

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

Dalton, L. R.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Dolfi, D.

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Engelson, M.

M. Engelson, Modern Spectrum Analyzer Theory and Applications (Artech House, 1984).

Equall, R. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Fetterman, H. R.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Gorju, G.

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

Gu, D.

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Harris, T. L.

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

Hok, G.

G. Hok, "Response of linear resonant systems to excitation of a frequency varying linearly with time," J. Appl. Phys. 19, 242-250 (1948).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Huang, J.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

Huignard, J.-P.

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Hutcheson, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Jefferson, C. M.

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

Kaarli, R.

A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991).
[CrossRef]

Kachru, R.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

Karlsson, C. J.

Kim, M. K.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kröll, S.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

Lavielle, V.

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Le Gouët, J.

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

Le Gouët, J.-L.

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Lezama, A.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

Li, Y.

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

Liu, G. K.

G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990).
[CrossRef]

Lorgeré, I.

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Macfarlane, R. M.

R. M. Macfarlane, "Direct process thermal line broadening in Tm:YAG," J. Lumin. 85, 181-186 (2000).
[CrossRef]

Markevitch, B. V.

J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).

Ménager, L.

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Merkel, K. D.

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Meystre, P.

P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, 1991).

Mitomi, O.

K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
[CrossRef]

Mohan, R. K.

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency chirped laser fields," Opt. Lett. 30, 1129-1131 (2005).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Mohan, R. Krishna

W. R. Babbitt and R. Krishna Mohan, Spectrum Lab, Department of Physics, Montana State University, Bozeman, Montana 59717 (personal communication, 2005).

Mossberg, T. W.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

T. W. Mossberg, "Time-domain frequency-selective optical data storage," Opt. Lett. 7, 77-79 (1982).

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Noguchi, K.

K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
[CrossRef]

Olson, A.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

Olsson, F. A. A.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Papoulis, A.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).

Poletti, M. A.

M. A. Poletti, "Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution," J. Audio Eng. Soc. 36, 457-468 (1988).

M. A. Poletti, "Linearly swept frequency measurements and the Wigner-Ville distribution," in Time-Frequency Signal Analysis: Methods and Applications, B.Boashash, ed., (Longman Chesire, 1992), Chap. 19, pp. 424-444.

Reibel, R.

Reibel, R. R.

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Renner, C.

Repasky, K. S.

Sargent, M.

P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, 1991).

Schlottau, F.

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
[CrossRef]

M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004).
[CrossRef]

F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
[CrossRef]

K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.

Sellin, P. B.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

Seze, F. D.

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

Shi, Y. Q.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Steier, W. H.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Strickland, N. M.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

Sun, Y.

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

Szaabo, A.

A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991).
[CrossRef]

Takagahara, T.

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

Thiel, C. W.

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Tian, M.

Tonda, S.

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Turpin, T.

T. Turpin, "Spectrum analysis using optical processing," Proc. IEEE 69, 80-92 (1981).

Uesegi, N.

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

Wagner, K.

M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
[CrossRef]

F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.

Wagner, K. H.

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, "Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis," Opt. Lett. 30, 3003-3005 (2005).
[CrossRef]

F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004).
[CrossRef]

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).

Wang, W. S.

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Xu, E. Y.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

Yano, R.

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

Zhang, J. M.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation FM spectroscopy," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, and Y. Q. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, "Real-time optical waveform convolver/cross correlator," Appl. Phys. Lett. 45, 714-716 (1984).
[CrossRef]

Electron. Lett. (1)

K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator," Electron. Lett. 34, 661-663 (1998).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

G. Gorju, V. Crozatier, V. Lavielle, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser," Eur. Phys. J. Appl. Phys. 30, 175-183 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Crozatier, V. Lavielle, F. Bretenaker, J. Le Gouët, and I. Lorgeré, "High-resolution radio frequency spectral analysis with photon echo chirp transform in an Er:YSO crystal," IEEE J. Quantum Electron. 40, 1450-1457 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Gorju, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, "10-GHz bandwidth rf spectral Analyzer with MHz resolution based on spectral hole burning in Tm3+:YAG," IEEE Photon. Technol. Lett. 17, 2385-2387 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Hok, "Response of linear resonant systems to excitation of a frequency varying linearly with time," J. Appl. Phys. 19, 242-250 (1948).
[CrossRef]

J. Audio Eng. Soc. (1)

M. A. Poletti, "Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution," J. Audio Eng. Soc. 36, 457-468 (1988).

J. Lumin. (7)

G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, "Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes," J. Lumin. 107, 314-331 (2004).
[CrossRef]

K. D. Merkel, Z. Cole, and W. R. Babbitt, "Signal correlator with programmable variable time delay based on optical coherent transients," J. Lumin. 86, 375-382 (2000).
[CrossRef]

F. Schlottau and K. H. Wagner, "Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography," J. Lumin. 107, 90-102 (2004).
[CrossRef]

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, "Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG," J. Lumin. 107, 62-74 (2004).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare-earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

R. M. Macfarlane, "Direct process thermal line broadening in Tm:YAG," J. Lumin. 85, 181-186 (2000).
[CrossRef]

V. Lavielle, F. D. Seze, I. Lorgeré, and J.-L. Le Gouët, "Wideband radio frequency spectrum analyzer: improved design and experimental results," J. Lumin. 107, 75-89 (2004).
[CrossRef]

J. Mod. Opt. (1)

I. Lorgeré, L. Ménager, V. Lavielle, J.-L. Le Gouët, D. Dolfi, S. Tonda, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyser based on spectral hole burning," J. Mod. Opt. 49, 2459-2475 (2002).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (1)

G. Armagan, A. M. Buoncristiani, and B. D. Bartolo, "Excited state dynamics of thulium ions in yttrium aluminum garnets," Opt. Mater. 1, 11-20 (1992).
[CrossRef]

Phys. Rev. A (1)

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef]

Phys. Rev. B (5)

T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B 73, 075101 (2006).
[CrossRef]

A. Szaabo and R. Kaarli, "Optical hole burning and spectral diffusion in ruby," Phys. Rev. B 44, 12307-12313 (1991).
[CrossRef]

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, "Intensity-dependent photon-echo relaxation in rare-earth-doped crystals," Phys. Rev. B 41, 11568-11571 (1990).
[CrossRef]

G. K. Liu and R. L. Cone, "Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments," Phys. Rev. B 41, 6193-6200 (1990).
[CrossRef]

Phys. Rev. Lett. (2)

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, "Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts," Phys. Rev. Lett. 63, 78-81 (1989).
[CrossRef]

M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesegi, "Excitation-induced frequency shift probed by stimulated photon echoes," Phys. Rev. Lett. 68, 3216-3219 (1992).
[CrossRef]

Proc. IEEE (1)

T. Turpin, "Spectrum analysis using optical processing," Proc. IEEE 69, 80-92 (1981).

Proc. SPIE (5)

J. L. Anderson, H. B. Brown, and B. V. Markevitch, "Wideband real-time Fourier analyzer using folded spectrum techniques," in Real-Time Signal Processing II, T. F. Tao, ed., Proc. SPIE 180, 146-152 (1979).

M. Colice, F. Schlottau, and K. Wagner, "Ultrawideband, wide-open rf spectrum analysis using spectral hole burning," in Microwave Photonics, J. Yao, ed., Proc. SPIE 5971, 564-573 (2005).

M. Colice, F. Schlottau, K. Wagner, R. K. Mohan, W. R. Babbitt, I. Lorgeré, and J.-L. Le Gouët, "RF Spectrum Analysis in Spectral Hole Burning Media," in Optical Information Systems II, B. Javidi and D. Psaltis, eds., Proc. SPIE 5557, 132-139 (2004).
[CrossRef]

F. Schlottau, B. Braker, and K. Wagner, "Squint compensation for a broadband RF array spectral imager using spatial spectral holography," in Imaging Spectrometry X, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5546, 244-252 (2004).
[CrossRef]

B. M. Braker, Y. Li, D. Gu, F. Schlottau, and K. H. Wagner, "Broadband microwave imaging with spectral hole burning for squint compensation," in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds., Proc. SPIE 5789, 69-79 (2005).
[CrossRef]

Other (11)

K. H. Wagner, F. Schlottau, and J. Bregman, "Array imaging using spatial-spectral holography," in Optics in Computing (International Commission on Optics, 2002).

F. Schlottau, K. Wagner, J. Bregman, and J.-L. Le Gouët, "Sparse antenna array multiple beamforming and spectral analysis using spatial-spectral holography," in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 355-358.

W. R. Babbitt and R. Krishna Mohan, Spectrum Lab, Department of Physics, Montana State University, Bozeman, Montana 59717 (personal communication, 2005).

P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, 1991).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).

M. A. Poletti, "Linearly swept frequency measurements and the Wigner-Ville distribution," in Time-Frequency Signal Analysis: Methods and Applications, B.Boashash, ed., (Longman Chesire, 1992), Chap. 19, pp. 424-444.

M. Engelson, Modern Spectrum Analyzer Theory and Applications (Artech House, 1984).

Spectrum Analysis Basics, Application Note 150 (Agilent, 2004), www.agilent.com.

Fundamentals of Real-Time Spectrum Analysis, Primer, Tektronix (2004), www.tektronix.com.

R. K. Mohan, Z. Cole, R. R. Reibel, T. Chang, K. D. Merkel, W. R. Babbitt, M. Colice, F. Schlottau, and K. H. Wagner, "Microwave spectral analysis using optical spectral holeburning," in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 24-27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics