Abstract

Holographic recording media with a reflection layer are useful because they make it possible to maintain backward compatibility with CDs and DVDs, and a conventional servo system is easily attachable. The incident beam is fed back to the recording layer by the reflection layer, so there are four beam pairs to record the transmission and reflection holograms. We analyze the basic property of the transmission and reflection holograms and evaluate the problem when the transmission and reflection holograms are recorded at the same time. It is shown that the shrinkage in the photopolymer medium has a different effect on each hologram, so the readout image from the two holograms is misaligned. Those diffraction beams make the interference pattern, and the signal-to-noise ratio (SNR) of the output image decreased. Taking into account the difference in wavelength selectivity between the transmission and the reflection holograms, we propose a way to select one hologram to get the diffraction beam and eliminate the interference pattern using the tuning readout wavelength. By using this method, we can eliminate the diffraction beam from the reflection hologram and keep a high SNR.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takeshima, P. Sundaram, L. Hesselink, R. Okas, D. K. Wan, and R. Snyder, "High-transfer-rate high capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  2. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]
  3. D. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).
  4. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.
  5. L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
    [CrossRef]
  6. H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
    [CrossRef] [PubMed]
  7. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
    [CrossRef]
  8. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.
  9. H. Kogelnik, "Coupled-wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  10. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models," Appl. Opt. 41, 845-852 (2002).
    [CrossRef] [PubMed]

2005 (1)

2004 (2)

2002 (1)

1998 (1)

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

1993 (1)

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled-wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Anderson, K.

K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

Bair, H.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Bjornson, E.

Boyd, C.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Coufal, D.

D. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Curtis, K.

K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

Dhar, L.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

Hesselink, L.

Hill, A.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

Horimai, H.

Kogelnik, H.

H. Kogelnik, "Coupled-wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Lawrence, J. R.

Li, J.

Okas, R.

O'Neill, F. T.

Orlov, L. S. S.

Phillips, W.

Psaltis, D.

D. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Schilling, M.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Schonoes, M. G.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Sheridan, J. T.

Sincerbox, G. T.

D. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

Snyder, R.

Sugiki, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.

Sundaram, P.

Takeshima, Y.

Tan, X.

Tanaka, T.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.

Toishi, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.

Wan, D. K.

Watanabe, K.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Yang, Z.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Yu, F. T. S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhao, F.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhou, H.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled-wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Opt. Commun. (1)

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Opt. Lett. (1)

Other (3)

D. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in2," in International Symposium on Optical Memory and Optical Data Storage 2005 Technical Digest, paper ThE2.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Temperature tolerance improvement with wavelength tuning laser source in holographic data storage," in ISOM/ODS2005, Technical Digest, paper ThE5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of writing and reading of the transmission and reflection holograms.

Fig. 2
Fig. 2

Experimental setup of writing transmission and reflection holograms with a plane wave.

Fig. 3
Fig. 3

Diffraction efficiency depending on the readout angle. (a) Total diffraction efficiency, (b) magnified figure at −25° to −23°, (c) magnified figure at 23.5° to 24.5°.

Fig. 4
Fig. 4

Numerical and experimental results of a Bragg-angle shift in the reflection hologram when the medium angle is 0°.

Fig. 5
Fig. 5

Bragg-angle shift depending on the recording angle when the angles between the signal and the reference beams are 120°, 135°, 155° (reflection hologram), and 45° (transmission hologram).

Fig. 6
Fig. 6

Calculated wavelength selectivity of transmission and reflection holograms.

Fig. 7
Fig. 7

Wavelength selectivity of the transmission and reflection holograms in the experiment.

Fig. 8
Fig. 8

Experimental setup of recording a 2D image.

Fig. 9
Fig. 9

Readout image of each case. (a) Image from the transmission hologram, (b) image from the reflection hologram, (c) image from both the transmission and the reflection holograms.

Fig. 10
Fig. 10

Readout image with a wavelength shift: (a) 0.05   nm shift from the recording wavelength and (b) 0.1   nm shift from the recording wavelength.

Fig. 11
Fig. 11

Diffraction efficiency distribution depending on the readout angle of recording (a) only the transmission hologram and (b) the transmission and reflection holograms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ transmission = λ 0 2 cos θ λ 0 cos θ + 2 n L sin 2 θ .
Δ λ reflection = λ 0 2 λ 0 + 2 n L cos θ .

Metrics