Abstract

We present an overview of the properties and applications of optical bistability in vertical-cavity semiconductor optical amplifiers (VCSOAs). The basic physics and analytical models of this optical nonlinearity are discussed. Experimental results obtained from a VCSOA operated in the 850 nm wavelength region are presented. Counterclockwise hysteresis loops are obtained over a range of initial phase detuning and bias currents. One hysteresis loop is observed experimentally with an input power as low as 2μW when the device is biased at 98% of its lasing threshold. Numerical simulations based on the Fabry–Perot resonator model and rate equations we developed show good agreement with our experimental observations. In addition, a low input intensity high contrast (10:1) optical and gate and 2R regeneration are demonstrated. We believe that bistable VCSOAs can significantly advance the prospect of a dense two-dimensional array of low-switching-intensity all-optical logic and memory elements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Adams, "Physics and applications of optical bistability in semiconductor laser amplifiers," Solid-State Electron. 30, 43-51 (1987).
    [CrossRef]
  2. N. F. Mitchell, J. Ogorman, J. Hegarty, and J. C. Connolly, "Optical bistability in asymmetric Fabry-Perot laser diode amplifiers," Opt. Lett. 19, 269-271 (1994).
    [CrossRef] [PubMed]
  3. T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
    [CrossRef]
  4. N. Ogasawara and R. Ito, "Static and dynamic properties of nonlinear semiconductor laser amplifiers," Jpn. J. Appl. Phys. Part 2 25, L739-L742 (1986).
  5. H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
    [CrossRef]
  6. W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
  7. P. Pakdeevanich and M. Adams, "Measurement and modeling of reflective bistability in 1.55 μm laser diode amplifiers," IEEE J. Quantum Electron. 34, 1894-1903 (1999).
    [CrossRef]
  8. R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
    [CrossRef]
  9. E. S. Björlin, B. Riou, P. Abraham, J. Piprek, Y. Chiu, K. A. Black, A. Keating, and J. E. Bowers, "Long wavelength vertical-cavity semiconductor optical amplifiers," IEEE J. Quantum Electron. 37, 274-281 (2001).
  10. P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).
  11. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diode (Artech House, 1994).
  12. M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
    [CrossRef]
  13. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).
  14. D. T. Cassidy, "Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser," Appl. Opt. 22, 3321-3326 (1983).
    [CrossRef] [PubMed]
  15. M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
    [CrossRef]
  16. P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
    [PubMed]
  17. Z. Pan and M. Dagenais, "Subnanosecond optically addressable generalized optical crossbar switch with an aggregate throughput rate of 4.2 Gbit/s," Appl. Phys. Lett. 62, 2185-2187 (1993).
    [CrossRef]
  18. J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).
  19. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, 1995).
  20. Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
    [CrossRef]
  21. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).
  22. W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
    [CrossRef]
  23. P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
    [CrossRef]
  24. H. J. Caulfield, J. A. Neff, and W. T. Rhodes, Laser Focus/Electro-optics 19, 100-105 (1983).
  25. H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).
  26. M. J. Adams, "Time-dependent analysis of active and passive optical bistability in semiconductors," IEE J 132, 343-348 (1985).
  27. K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).
  28. M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
    [CrossRef]
  29. J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
    [CrossRef]
  30. M. Sanchez, P. Wen, M. Gross, and S. Esener, "All-optical 2R regeneration using a nonlinear vertical cavity semiconductor optical amplifier," in OSA Optics in Computing 2003 (Optical Society of America, 2003), pp. 78-80.

2003

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

2002

M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
[CrossRef]

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
[PubMed]

2001

J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).

1999

P. Pakdeevanich and M. Adams, "Measurement and modeling of reflective bistability in 1.55 μm laser diode amplifiers," IEEE J. Quantum Electron. 34, 1894-1903 (1999).
[CrossRef]

1998

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

1994

1993

Z. Pan and M. Dagenais, "Subnanosecond optically addressable generalized optical crossbar switch with an aggregate throughput rate of 4.2 Gbit/s," Appl. Phys. Lett. 62, 2185-2187 (1993).
[CrossRef]

1991

Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
[CrossRef]

1987

M. J. Adams, "Physics and applications of optical bistability in semiconductor laser amplifiers," Solid-State Electron. 30, 43-51 (1987).
[CrossRef]

1986

W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
[CrossRef]

1985

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).

M. J. Adams, "Time-dependent analysis of active and passive optical bistability in semiconductors," IEE J 132, 343-348 (1985).

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
[CrossRef]

1983

T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
[CrossRef]

D. T. Cassidy, "Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser," Appl. Opt. 22, 3321-3326 (1983).
[CrossRef] [PubMed]

Adams, M.

P. Pakdeevanich and M. Adams, "Measurement and modeling of reflective bistability in 1.55 μm laser diode amplifiers," IEEE J. Quantum Electron. 34, 1894-1903 (1999).
[CrossRef]

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
[CrossRef]

Adams, M. J.

M. J. Adams, "Physics and applications of optical bistability in semiconductor laser amplifiers," Solid-State Electron. 30, 43-51 (1987).
[CrossRef]

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

Baets, R.

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
[CrossRef]

Bjorlin, E. S.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).

Bowers, J. E.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).

Cassidy, D. T.

Connolly, J. C.

Dagenais, M.

Z. Pan and M. Dagenais, "Subnanosecond optically addressable generalized optical crossbar switch with an aggregate throughput rate of 4.2 Gbit/s," Appl. Phys. Lett. 62, 2185-2187 (1993).
[CrossRef]

Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
[CrossRef]

W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
[CrossRef]

De Merlier, J.

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

Esener, S.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
[PubMed]

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

Gross, M.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
[PubMed]

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

Hegarty, J.

Henning, I.

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

Ito, R.

T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
[CrossRef]

Karlsson, A.

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

Kibar, O.

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

Lewen, R.

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

Lin, H.

Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
[CrossRef]

Mitchell, N. F.

Moerman, I.

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

Morthier, G.

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
[CrossRef]

Nakai, T.

T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
[CrossRef]

Ogasawara, N.

T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
[CrossRef]

Ogorman, J.

Omahony, J.

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

Omahony, M.

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
[CrossRef]

Pakdeevanich, P.

P. Pakdeevanich and M. Adams, "Measurement and modeling of reflective bistability in 1.55 μm laser diode amplifiers," IEEE J. Quantum Electron. 34, 1894-1903 (1999).
[CrossRef]

Pan, Z.

Z. Pan and M. Dagenais, "Subnanosecond optically addressable generalized optical crossbar switch with an aggregate throughput rate of 4.2 Gbit/s," Appl. Phys. Lett. 62, 2185-2187 (1993).
[CrossRef]

Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
[CrossRef]

Piprek, J.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).

Rapp, S.

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

Sanchez, M.

Sánchez, M.

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

Sharfin, W. F.

W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
[CrossRef]

Streubel, K.

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

Van Daele, P.

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

Wen, P.

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
[PubMed]

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

Westlake, H.

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

Westlake, H. J.

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
[CrossRef]

Zhao, M.

M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Pan and M. Dagenais, "Subnanosecond optically addressable generalized optical crossbar switch with an aggregate throughput rate of 4.2 Gbit/s," Appl. Phys. Lett. 62, 2185-2187 (1993).
[CrossRef]

Z. Pan, H. Lin, and M. Dagenais, "Switching power dependence on detuning and current in bistable diode laser amplifiers," Appl. Phys. Lett. 58, 687-689 (1991).
[CrossRef]

W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).
[CrossRef]

Electron. Lett.

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," Electron. Lett. 21, 992-993 (1985).
[CrossRef]

J. De Merlier, G. Morthier, I. Moerman, P. Van Daele, and R. Baets, "All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA," Electron. Lett. 38, 238-239 (2002).
[CrossRef]

IEE J

M. J. Adams, "Time-dependent analysis of active and passive optical bistability in semiconductors," IEE J 132, 343-348 (1985).

IEEE Electron Device Lett.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, "Optical gain-bandwidth product of vertical cavity laser amplifiers," IEEE Electron Device Lett. 37, 298-299 (2001).

IEEE J. Quantum Electron.

M. J. Adams, H. Westlake, J. Omahony, and I. Henning, "A comparison for active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. 21, 1498-1504 (1985).
[CrossRef]

P. Pakdeevanich and M. Adams, "Measurement and modeling of reflective bistability in 1.55 μm laser diode amplifiers," IEEE J. Quantum Electron. 34, 1894-1903 (1999).
[CrossRef]

H. J. Westlake, M. Adams, and M. Omahony, "Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm," IEEE J. Quantum Electron. 35, 1894-1903 (1985).

IEEE Photon Technol. Lett.

M. Sánchez, P. Wen, M. Gross, and S. Esener, "Nonlinear gain in vertical-cavity semiconductor optical amplifiers," IEEE Photon Technol. Lett. 15, 507-509 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Zhao, G. Morthier, and R. Baets, "Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator," IEEE Photon. Technol. Lett. 14, 992-994 (2002).
[CrossRef]

R. Lewen, K. Streubel, A. Karlsson, and S. Rapp, "Experimental demonstration of a multifunction long-wavelength vertical-cavity laser amplifier-detector," IEEE Photon. Technol. Lett. 10, 1067-1069 (1998).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

T. Nakai, N. Ogasawara, and R. Ito, "Optical bistability in a semiconductor laser amplifier," Jpn. J. Appl. Phys. Part 2 22, L310-L312 (1983).
[CrossRef]

Opt. Commun.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical and gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Solid-State Electron.

M. J. Adams, "Physics and applications of optical bistability in semiconductor laser amplifiers," Solid-State Electron. 30, 43-51 (1987).
[CrossRef]

Other

M. Sanchez, P. Wen, M. Gross, and S. Esener, "All-optical 2R regeneration using a nonlinear vertical cavity semiconductor optical amplifier," in OSA Optics in Computing 2003 (Optical Society of America, 2003), pp. 78-80.

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).

H. J. Caulfield, J. A. Neff, and W. T. Rhodes, Laser Focus/Electro-optics 19, 100-105 (1983).

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, 1995).

N. Ogasawara and R. Ito, "Static and dynamic properties of nonlinear semiconductor laser amplifiers," Jpn. J. Appl. Phys. Part 2 25, L739-L742 (1986).

W. F. Sharfin and M. Dagenais, "High contrast, 1.3 μm optical and gate with gain," Appl. Phys. Lett. 48, 1510-1512 (1986).

E. S. Björlin, B. Riou, P. Abraham, J. Piprek, Y. Chiu, K. A. Black, A. Keating, and J. E. Bowers, "Long wavelength vertical-cavity semiconductor optical amplifiers," IEEE J. Quantum Electron. 37, 274-281 (2001).

P. Wen, M. Sánchez, M. Gross, O. Kibar, and S. Esener, "New photon density rate equation for Fabry-Perot semiconductor optical amplifier," in Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250 (2002).

H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diode (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical I∕O: hysteresis loops with I Bias = 0.95 I Th . The initial phase detuning values are 4 × 10 4 π for squares, 4.8 × 10 4 π for dots, and 5.7 × 10 4 π for triangles.

Fig. 2
Fig. 2

Optical I∕O: hysteresis loops measured at different bias currents with the same initial phase detuning. I Bias = 0.98 I Th for diamonds and I Bias = 0.95 I Th for dots.

Fig. 3
Fig. 3

Gain spectrum of a VCSOA biased at 95 % of its lasing threshold: solid curve, theoretical results; dots, experimental measurements.

Fig. 4
Fig. 4

Numerical simulation of the optical bistability in a VCSOA with I Bias = 0.95 I Th .

Fig. 5
Fig. 5

Numerical simulation of the optical bistability in a VCSOA with a fixed initial phase detuning at a different bias current.

Fig. 6
Fig. 6

LI curve: dots, measured data; solid curve, the calculation.

Fig. 7
Fig. 7

Gain versus detuning for several input powers. Calculated result on the left, measured data on the right.

Fig. 8
Fig. 8

Output versus input power for several detunings at 5.8 mA bias. Symbols are measured data, solid curves are calculated. Detunings are (mrad): (a) 0.5, (b) 0.05, (c) −0.4, (d) −0.78.

Fig. 9
Fig. 9

Output versus input power for several detunings at 5.6 mA bias. Symbols are measured data, solid curves are calculated. Detunings are (mrad): (a) 0.6, (b) 0.1, (c) −0.35, (d) −0.65.

Fig. 10
Fig. 10

(a) Differential gain and (b) truth table for the and gate.

Fig. 11
Fig. 11

Differential gain measured in a VCSOA.

Fig. 12
Fig. 12

and gate operation.

Fig. 13
Fig. 13

VCSOA optical output versus input. Dashed lines denote on- and off-state power levels.

Fig. 14
Fig. 14

Logarithmic-linear plot of optical input and output. Dashed curves are input. Solid curves are output. (a) I∕O are plotted to same scale to show amplification. (b) I∕O is normalized to unity to show extinction ratio improvement and pulse reshaping. Inset is linear plot of peak 4. Gray line shows threshold level, corresponding to the shaded region in Fig. 13. Peaks are numbered sequentially.

Tables (2)

Tables Icon

Table 1 Parameters Used in the Calculation of Theoretical Curves

Tables Icon

Table 2 Rate Equation Parameters for VCSOA

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C p N inj = η in ( 1 + G s ) ( 1 R g Cos 2 ϕ ) + ( R 2 G s / k L ) ( 1 R g ) Sin ( 2 ϕ ) ( 1 R g ) 2 + 4 R g Sin 2 ϕ ( 1 R 1 ) τ RT N inj , R g = R 1 R 2 G s .
G s = e ( ΓΓ l gL α i L ) , ϕ = ϕ 0 ( β c / 2 ) ΓΓ l La ( n n 1 ) .

Metrics