Abstract

We have developed a systematic design process for recently proposed slanted grating couplers (SGCs) that operates in the strong coupling regime. Based on rigorous analysis of SGC properties, this design process utilizes the k-vector diagram and a rigorous grating leaky-mode solver to intentionally enforce the phase-match and Bragg conditions. We demonstrate that the resultant SGC designs have performance similar to those obtained by parallel micro-genetic algorithm (μGA) optimization with the two-dimensional finite-difference time-domain (2D FDTD) method. Only two 2D FDTD simulations are necessary in the later stages of our systematic design process. Therefore the time saving is tremendous compared to a μGA 2D FDTD design tool, which can require thousands of individual 2D FDTD simulation runs. We illustrate the utility of our new systematic design process with an embedded slanted grating coupler example.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Wang, J. Jiang, and G. P. Nordin, "Compact slanted grating couplers," Opt. Express 12, 3313-3326 (2004).
    [CrossRef] [PubMed]
  2. B. Wang, J. Jiang, and G. P. Nordin, "Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides," IEEE Photon. Technol. Lett. 17, 1884-1886 (2005).
    [CrossRef]
  3. B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, "Stratified waveguide grating coupler for normal fiber incidence," Opt. Lett. 30, 845-847 (2005).
    [CrossRef] [PubMed]
  4. S. Wu and E. N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Appl. Opt. 43, 1009-1023 (2004).
    [CrossRef] [PubMed]
  5. R. A. Villalaz, E. N. Glytsis, and T. K. Gaylord, "Volume grating couplers: polarization and loss effects," Appl. Opt. 41, 5223-5229 (2002).
    [CrossRef] [PubMed]
  6. M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996).
    [CrossRef]
  7. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]

2005 (2)

B. Wang, J. Jiang, and G. P. Nordin, "Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides," IEEE Photon. Technol. Lett. 17, 1884-1886 (2005).
[CrossRef]

B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, "Stratified waveguide grating coupler for normal fiber incidence," Opt. Lett. 30, 845-847 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

R. A. Villalaz, E. N. Glytsis, and T. K. Gaylord, "Volume grating couplers: polarization and loss effects," Appl. Opt. 41, 5223-5229 (2002).
[CrossRef] [PubMed]

1996 (1)

M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996).
[CrossRef]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Cai, J.

Chambers, D. M.

Daele, P. V.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Jiang, J.

Krauss, T.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Li, M.

M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996).
[CrossRef]

Mesel, K. D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Nordin, G. P.

Sheard, S. J.

M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996).
[CrossRef]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Villalaz, R. A.

Wang, B.

Wu, S.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Wang, J. Jiang, and G. P. Nordin, "Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides," IEEE Photon. Technol. Lett. 17, 1884-1886 (2005).
[CrossRef]

Opt. Eng. (1)

M. Li and S. J. Sheard, "Experimental study of waveguide grating couplers with parallelogramic tooth profiles," Opt. Eng. 35, 3101-3106 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of ESGC geometry.[2]

Fig. 2
Fig. 2

k-Vector diagram of the μGA 2D FDTD optimized ESGC.[2]

Fig. 3
Fig. 3

Cross section of the near field of the output coupler calculated by 2D FDTD.

Fig. 4
Fig. 4

2D FDTD result of magnitude-squared time-averaged E z component of input coupler with fill factor of 0.5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ave = n 1 2 × fillfactor + n 2 2 × ( 1 fillfactor ) .
Λ x = λ 0 cos ( 2 θ 90 ° ) × n ave .

Metrics