Abstract

The spatial distribution of the second-order optical nonlinearity in thermally poled optical fibers was characterized with second-harmonic microscopy. The second-order optical nonlinearity (SON) was found to be distributed in a layer, the progression of which was impeded at the core-cladding interface, which acted as an extra potential barrier to the migrating ions. At higher poling voltages and temperatures, the SON layer could overcome this barrier and extend further into the fiber core. The polarization dependence of the optical nonlinearity within the fiber core was also checked and found to be almost negligible.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
  3. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
    [CrossRef]
  4. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
    [CrossRef]
  5. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in a silica channel waveguide," Opt. Lett. 19, 466-468 (1994).
    [CrossRef] [PubMed]
  6. P. G. Kazansky, L. Dong, and P. St. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett.19,701-703 (1994).
  7. X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
    [CrossRef]
  8. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
    [CrossRef]
  9. J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
    [CrossRef]
  10. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
    [CrossRef]
  11. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
    [CrossRef]
  12. N. Myrén and W. Margulis, "Time evolution of frozen-in field during poling of fiber with alloy electrodes," Opt. Express 13, 3438-3444 (2005).
    [CrossRef] [PubMed]
  13. H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
    [CrossRef]
  14. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  15. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
    [CrossRef] [PubMed]
  16. H. An and S. Fleming, "Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers," Appl. Phys. Lett. 87, 101108 (2005).
  17. A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).
  18. O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
    [CrossRef]

2005 (1)

2004 (3)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
[CrossRef] [PubMed]

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

2003 (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

2002 (2)

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
[CrossRef]

2001 (1)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

2000 (2)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

1999 (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

1998 (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

1996 (1)

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

1994 (1)

1991 (1)

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

An, H.

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

H. An and S. Fleming, "Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers," Appl. Phys. Lett. 87, 101108 (2005).

Arentoft, J.

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

Blazkiewicz, P.

Bonfrate, G.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Bozhevolnyi, S. I.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[CrossRef] [PubMed]

Busacca, A.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Corbari, C.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Cox, G.

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Cutroni, M.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Deparis, O.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Digonnet, M. J. F.

Dong, L.

P. G. Kazansky, L. Dong, and P. St. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett.19,701-703 (1994).

Faccio, D.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Feltri, A.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Fleming, S.

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

H. An and S. Fleming, "Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers," Appl. Phys. Lett. 87, 101108 (2005).

Grandi, S.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Harwood, D. W. J.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Kazansky, P. G.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett.19,701-703 (1994).

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).

Kino, G. S.

Kristensen, M.

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

Kudlinski, A.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Liu, A. C.

Lo, K. M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Long, X.-C.

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

Mandanici, A.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Margulis, W.

Martinelli, G.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Mukherjee, N.

Mustarelli, P.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[CrossRef] [PubMed]

Myrén, N.

Nielsen, C. B.

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

Ozcan, A.

Pedersen, K.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

Pruneri, V.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Quiquempois, Y.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky, L. Dong, and P. St. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett.19,701-703 (1994).

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).

Sakaguchi, K.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Shi, P.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

Wong, D.

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Xu, W.

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Yu, P.

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

J. Arentoft, K. Pedersen, S. I. Bozhevolnyi, M. Kristensen, P. Yu, and C. B. Nielsen, "Second-harmonic imaging of poled silica waveguides," Appl. Phys. Lett. 76, 25-27 (2000).
[CrossRef]

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Electron. Lett. (1)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, "Poling of silica with silver-containing electrodes," Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electrooptic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides," Opt. Commun. 196, 187-190 (2001).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Opt. Lett. (2)

Other (4)

P. G. Kazansky, L. Dong, and P. St. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett.19,701-703 (1994).

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).

H. An and S. Fleming, "Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers," Appl. Phys. Lett. 87, 101108 (2005).

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, "GeO2-doped silica glasses: an ac conductivity study," Solid State Ionics 154-155,217-221 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SH micrographs of a D fiber poled at 2.0   kV and 280   ° C for 30   min . (a) SH signal from channel 2; (b) overlay image from channels 1 and 2. The SH signal near the top left corner of the images comes from the cross section of another poled fiber in the same glass capillary.

Fig. 2
Fig. 2

Profile-retrieving result from a line scan across both the fiber core and the core-cladding interface. The scanning line is shown in the inset.

Fig. 3
Fig. 3

SH micrographs of a D fiber poled at 2 .5   kV and 280   ° C for 30   min . (a) SH signal from channel 2; (b) overlay image from channels 1 and 2.

Fig. 4
Fig. 4

SH micrographs of a D fiber poled at 4 .5   kV and 280   ° C for 60   min . (a) SH signal from channel 2; (b) overlay image from channels 1 and 2.

Fig. 5
Fig. 5

SH micrographs of a D fiber poled at 2 .0   kV and 320   ° C for 30   min . (a) SH signal from channel 2; (b) overlay image from channels 1 and 2.

Fig. 6
Fig. 6

SH micrographs of a D fiber poled at 4 .5   kV and 280   ° C for 60   min with the poling direction either (a) parallel or (b) perpendicular to the polarization of the fundamental laser beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ ( T ) = q x 0 2 K T Γ 0 exp ( E K T ) ,

Metrics