Abstract

We analyze the temperature distribution in several Yb:YAG longitudinally pumped amplifier crystals by using various cooling configurations. The crystal designs are (i) a composite crystal made of a thin sheet of high-doped Yb:YAG bonded on a bulk piece of undoped YAG and (ii) a thick piece of low-doped Yb:YAG crystal. The cooling configurations investigated here include those both from the rear face or from the rear and side faces together. In every case we determine the average temperature rise, the longitudinal and radial temperature gradient, and the resulting crystal bending and optical phase distortion. We optimize the best cooling configuration and crystal design by compromising the average temperature, thermodeformation, and optical phase distortion. The experimental results also indicate that a thin sheet of gain medium (1.6  mm thick at 10 at. % doping) suffers from a notable bending deformation, which results in an unexpected decrease of the output energy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).
  2. A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).
  3. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
    [CrossRef]
  4. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
    [CrossRef]
  5. G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped Ytterbium doped materials," Opt. Commun. 200, 331-342 (2001).
    [CrossRef]
  6. H. Yu, G. Bourdet, and S. Ferre, "Comprehensive modeling of the temperature-related laser performances of the amplifiers of the LUCIA laser," Appl. Opt. 44, 6412-6418 (2005).
    [CrossRef] [PubMed]
  7. H. Yu and G. Bourdet, "Thickness optimization of the composite gain medium for the oscillator and amplifier of the LUCIA laser," Appl. Opt. 44, 7161-7169 (2005).
    [CrossRef] [PubMed]
  8. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
    [CrossRef]
  9. G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

2005

2004

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

2003

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

2001

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped Ytterbium doped materials," Opt. Commun. 200, 331-342 (2001).
[CrossRef]

Bayramian, A.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Beach, R.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Bibeau, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Bodefeld, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Bourdet, G.

Bourdet, G. L.

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped Ytterbium doped materials," Opt. Commun. 200, 331-342 (2001).
[CrossRef]

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Casagrande, O.

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Chanteloup, J.-C.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Dambrine, C.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Ebbers, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Emanuel, M.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Ferre, S.

Ferré, S.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Freitas, B.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Fulkerson, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Fülöp, A.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Hein, J.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Hellwing, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Hinz, A.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Kanz, K.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Le Moal, S.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Le Touzé, G.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Marshall, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Mills, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Nakano, H.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Orth, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Pichot, A.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Podleska, S.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Rothenberg, J.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Sauerbey, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Schaffers, K.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Seppala, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Siebold, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Skidmore, J.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Smith, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Sutton, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Telford, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Winizer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Yu, H.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

H. Yu and G. Bourdet, "Thickness optimization of the composite gain medium for the oscillator and amplifier of the LUCIA laser," Appl. Opt. 44, 7161-7169 (2005).
[CrossRef] [PubMed]

H. Yu, G. Bourdet, and S. Ferre, "Comprehensive modeling of the temperature-related laser performances of the amplifiers of the LUCIA laser," Appl. Opt. 44, 6412-6418 (2005).
[CrossRef] [PubMed]

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Zapata, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

Zhao, Z.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Appl. Opt.

Appl. Phys. B

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004).
[CrossRef]

Appl. Phys. Lett.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

IEEE J. Quantum Electron.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser Demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Opt. Commun.

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped Ytterbium doped materials," Opt. Commun. 200, 331-342 (2001).
[CrossRef]

Proc. SPIE

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, "Progress in the LUCIA project," in SPIE Optics and Opto-electronics,Proc. SPIE 5958, 1-12 (2005).

Other

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).

G. L. Bourdet, H. Yu, O. Casagrande, Z. Zhao, J.-C. Chanteloup, and A. Fülöp, "Comparison of laser and electro-optic crystals for high average power diode pumped solid state laser," presented at the Third Asian Conference on Crystal Growth and Crystal Technology, Beijing, China, 16-19 October 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the energy levels of Yb ion.

Fig. 2
Fig. 2

Maximum extractable stored fluence versus the different medium thickness (10 at. %) pumped with different pulse duration at 300 K.

Fig. 3
Fig. 3

Maximum stored energy extractable efficiency at different pumping pulse duration ( 300   K ) .

Fig. 4
Fig. 4

Pumping and cooling of the gain medium.

Fig. 5
Fig. 5

(a) Longitudinal temperature distribution for various Yb concentrations for crystal water cooled on the rear face. (b) Longitudinal temperature distribution for various Yb concentrations for crystal water cooled on both the rear and side faces.

Fig. 6
Fig. 6

(a) Transverse temperature distribution within the crystal when the crystal is water cooled only on the rear face. (b) Transverse temperature distribution within the crystal when the crystal is water cooled on both the rear and the side faces.

Fig. 7
Fig. 7

Thickness of undoped YAG for minimum crystal bending versus the thickness of doped YAG for pumping condition of 15 kW / cm 2 , 1   ms , 10   Hz .

Fig. 8
Fig. 8

Thickness of undoped YAG versus water exchange coefficient for a doping concentration of 10 at. % and pumping condition of 15 kW / cm 2 , 1   ms , 10   Hz .

Fig. 9
Fig. 9

(a) Temperature spatial distribution on the surface y = 0 . (b) Temperature distribution along thickness when ( x = 0 , y = 0 ) . (c) Schematic diagram of the disk bending. (d) OPD profile.

Fig. 10
Fig. 10

(a) Schematic diagram of the disk bending deformation for case C ( x = y = 0 ) . (b) Schematic diagram of the disk bending deformation for case D ( x = y = 0 ) .

Fig. 11
Fig. 11

Schematic diagram of the experimental setup. The temperature and flow rate of water are 14.0 ° C and 2.7 ± 0.1   l / min , respectively.

Fig. 12
Fig. 12

(a) Relationship among the output energy, pumping energy, and repetition rate. (b) Dependence of the energy output on the repetition rate for two values of temperature of the cooling water. The pump energy is 9 J / pulse .

Fig. 13
Fig. 13

Comparison of the normalized efficiency of extractable stored energy between the experimental and theoretical results, which implies that the heat exchange coefficient of water is approximately 3000 W / m 2 / K .

Tables (3)

Tables Icon

Table 1 Possible Combinations of Yb Concentration and Thickness and Corresponding Thermal Power Density a

Tables Icon

Table 2 Different Cooling Conditions for Different Gain Medium Configurations

Tables Icon

Table 3 Average Temperature, Longitudinal Gradient, and OPD

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ N p = f L i N L f U j N U = N Yb ( f L i + f U j ) ( f p X U ) ,
Δ N l = f U n N U f L m N L = N Yb ( f L m + f U n ) ( X U f l ) ,
g 0 = σ l × Δ N l = σ l N Yb ( f L m + f U n ) ( X U f l ) .
κ ( C Yb ) = C 1 × exp ( - C 5 × C Yb C 7 ) + C 2 × C Yb C 6 + C 3 × C Yb + C 4 ,

Metrics