Abstract

We present a bichromatic prism pair interferometer (BPPI) for controlling the delay between laser pulses of two different frequencies propagating collinearly in a single beam. The BPPI is especially useful when working with ultrafast laser pulses because it intrinsically allows for independent control over the second-order dispersion experienced by the differently colored pulses. We use this control to demonstrate successful precompensation for blue (λ390  nm) and UV(λ260  nm) pulses that pass through 2.2  cm of dispersive material after the interferometer. The BPPI is extremely flexible and works with all frequencies from the UV to the near-infrared. We demonstrate this by describing measurements made with BPPIs configured for three different combinations of central frequencies.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
    [CrossRef]
  2. C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
    [CrossRef] [PubMed]
  3. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
    [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2002).
  5. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).
  6. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  7. S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
    [CrossRef]
  8. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, "LAB2--a virtual femtosecond laser lab," http://www.lab2.de (2004).
  9. X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
    [CrossRef]
  10. K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
    [CrossRef]
  11. S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
    [CrossRef]
  12. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]

2005 (1)

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

2002 (2)

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

2001 (1)

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

1998 (2)

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

1996 (1)

X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
[CrossRef]

1984 (1)

Backus, S.

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Beato, M.

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Beigang, R.

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Bor, Z.

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2002).

Brodeur, A.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Chin, S. L.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Cormier, J. F.

X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
[CrossRef]

Dantus, M.

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Dombi, P.

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Fork, R. L.

Fukui, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Gordon, J. P.

Grimberg, B. I.

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

Higashi, T.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Isobe, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Itoh, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Kandidov, V. P.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Kapteyn, H. C.

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Kosareva, O. G.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Kovács, A. P.

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Lee, K.

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Lozovoy, V. V.

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

Martinez, O. E.

Matsunaga, S.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Mukamel, S.

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

Murnane, M. M.

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Osvay, K.

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

Petit, S.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Piche, M.

X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Russmann, C.

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Stollhof, J.

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Watanabe, W.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Weiss, C.

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Xu, X.

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Xu, Z.

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Yang, S.

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Zhang, X.

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Zhu, X. N.

X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
[CrossRef]

Appl. Phys. B (1)

K. Osvay, P. Dombi, A. P. Kovács, and Z. Bor, "Fine tuning of the higher-order dispersion of a prismatic pulse compressor," Appl. Phys. B 75, 649-654 (2002).
[CrossRef]

J. Mod. Opt. (1)

X. N. Zhu, J. F. Cormier, and M. Piche, "Study of dispersion compensation in femtosecond lasers," J. Mod. Opt. 43, 1701-1721 (1996).
[CrossRef]

J. Phys. Chem. A (1)

B. I. Grimberg, V. V. Lozovoy, M. Dantus, and S. Mukamel, "Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation," J. Phys. Chem. A 106, 697-718 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167 (2005).
[CrossRef]

Nucleic Acids Res. (1)

C. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, "Two wavelength femtosecond laser induced DNA-protein crosslinking," Nucleic Acids Res. 26, 3967-3970 (1998).
[CrossRef] [PubMed]

Opt. Laser Eng. (1)

S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate the negative dispersion generated by prism pairs," Opt. Laser Eng. 36, 381-387 (2001).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other (3)

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, "LAB2--a virtual femtosecond laser lab," http://www.lab2.de (2004).

R. W. Boyd, Nonlinear Optics (Academic, 2002).

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, "Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)," J. Nonlinear Opt. Phys. Mater. 8, 121-146 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Layout of BPPI, consisting of only three prisms and three mirrors. The pick-off mirror has a small vertical offset. The incoming and exiting beams contain pulses of two central frequencies. (b) Detail view of one prism pair compressor showing rays representing the central, highest, and lowest frequency components of a single colored beam. D is the distance through a prism that the central frequency component of a beam travels. L is the distance between prisms, measured along the central frequency component of a beam. For multiple prisms in a BPPI, the subscript c refers to the common prism, while numeric subscripts correspond to each individual prism in turn. Values of D are changed by adjusting prism insertion along direction shown by arrows.

Fig. 2
Fig. 2

Difference frequency cross correlations of 260 nm and 390 nm pulses, taken with BPPI arrangement 1. The x axis is the delay of the 390 nm pulses with respect to the 260 nm pulses, and the signal is the difference frequency light created by mixing these pulses, observed by a spectrometer. The shading is proportional to the signal measured by the spectrometer. Below each spectrally resolved trace is the signal integrated over all wavelengths. Pulsewidths were determined by fitting Gaussians to the integrated signal. (a) SD signal optimized for no material and no material is present. (b) SD signal optimized for no material and material is present. (c) SD signal optimized for material and material is present.

Fig. 3
Fig. 3

(a) Sum frequency cross correlation of 780 nm and long 589 nm pulses taken with BPPI arrangement 2. The FWHM of this trace is ∼6 ps. (b) Difference frequency cross correlation of 800 nm and 400 nm pulses taken with BPPI arrangement 3. The FWHM of this trace is 44.6 ± 0.5 fs.

Tables (1)

Tables Icon

Table 1 Arrangements of Three Bichromatic Prism Pair Interferometers a

Metrics