Abstract

We propose and experimentally demonstrate thin-film filter- (TF) based reconfigurable 1×2 fiber-optic add–drop switch (FADS) structures. Our key idea is to locate a movable mirror oriented at a desired angle near the TF to switch the desired wavelength optical beams to the wanted switching ports. Our first moderate-optical-isolation TF-based reconfigurable 1×2 FADS is in a transmissive design. Another TF-based reconfigurable 1×2 FADS structure is in a retroreflective configuration, and it gives a very low optical-coherent cross talk. Our experimental proof of concept using an off-the-shelf four-cavity TF measured center wavelength at 1545.749  nm and a 0 .8  mm×0 .8  mm×0 .15   mm movable mirror confirms a -19  dB and a much improved <-53  dB optical-coherent cross talk for our transmissive and retroreflective configurations, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Holton, "The past is future," Laser Focus World 54 (2003).
  2. P. A. Bonenfant and M. L. Jones, "OFC 2003 workshop on wavelength selective switching based optical networks," J. Lightwave Technol. 22, 305-309 (2004).
    [CrossRef]
  3. C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J. (January-March 1999), pp. 207-229.
  4. N. A. Riza and S. Sumriddetchkajorn, "Fault tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device," Appl. Opt. 37, 6355-6361 (1998).
    [CrossRef]
  5. N. A. Riza and S. Sumriddetchkajorn, "Small tilt micromirror-based multiwavelength three-dimensional 2 × 2 fiber-optic switch structures," Opt. Eng. 39, 379-386 (2000).
    [CrossRef]
  6. N. A. Riza and S. Sumriddetchkajorn, "Versatile multi-wavelength fiber-optic switch and attenuator structures using mirror manipulations," Opt. Commun. 169, 233-244 (1999).
    [CrossRef]
  7. D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
    [CrossRef]
  8. M. B. Frish, P. B. Keating, W. J. Kessler, and S. J. Davis, "Miniature monolithic optical add-drop multiplexer," U.S. Patent 6453087 (17 September 2002).
  9. M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
    [CrossRef]
  10. S. Sumriddetchkajorn and K. Chaitavon, "A reconfigurable thin film filter-based 2 × 2 add-drop fiber-optic switch structure," IEEE Photon. Technol. Lett. 15, 930-932 (2003).
    [CrossRef]
  11. S. Sumriddetchkajorn and K. Chaitavon, "Wavelength sensitive thin film filter-based variable fiber-optic attenuator with an embedded monitoring port," IEEE Photon. Technol. Lett. 16, 1507-1509 (2004).
    [CrossRef]
  12. S. Sumriddetchkajorn and K. Chaitavon, "Compact low crosstalk 1 × 2 wavelength selective switch architectures," in Conference on Optical Transmission, Switching, and Subsystems II, C. F. Lam, W. Gu, N. Hanik, and K. Oguchi, eds., Proc. SPIE 5625, 793-803 (2004).
  13. Y. Mei and T. Hsien, 100 GHz DWDM Filter Approval Sheet (Walsin THz Technology Corporation, Taiwan, 2002).
  14. Micropositioner Product Datasheet (FiberTec, Ltd., Rolliweg 21, P.O. Box 448, CH-2543, Lengnua, BE, 2004).

2004 (4)

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "Wavelength sensitive thin film filter-based variable fiber-optic attenuator with an embedded monitoring port," IEEE Photon. Technol. Lett. 16, 1507-1509 (2004).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "Compact low crosstalk 1 × 2 wavelength selective switch architectures," in Conference on Optical Transmission, Switching, and Subsystems II, C. F. Lam, W. Gu, N. Hanik, and K. Oguchi, eds., Proc. SPIE 5625, 793-803 (2004).

P. A. Bonenfant and M. L. Jones, "OFC 2003 workshop on wavelength selective switching based optical networks," J. Lightwave Technol. 22, 305-309 (2004).
[CrossRef]

2003 (3)

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "A reconfigurable thin film filter-based 2 × 2 add-drop fiber-optic switch structure," IEEE Photon. Technol. Lett. 15, 930-932 (2003).
[CrossRef]

C. Holton, "The past is future," Laser Focus World 54 (2003).

2000 (1)

N. A. Riza and S. Sumriddetchkajorn, "Small tilt micromirror-based multiwavelength three-dimensional 2 × 2 fiber-optic switch structures," Opt. Eng. 39, 379-386 (2000).
[CrossRef]

1999 (2)

N. A. Riza and S. Sumriddetchkajorn, "Versatile multi-wavelength fiber-optic switch and attenuator structures using mirror manipulations," Opt. Commun. 169, 233-244 (1999).
[CrossRef]

C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J. (January-March 1999), pp. 207-229.

1998 (1)

Aksyuk, V. A.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Bonenfant, P. A.

Buhl, L. L.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Cappuzzo, M.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Chaitavon, K.

S. Sumriddetchkajorn and K. Chaitavon, "Wavelength sensitive thin film filter-based variable fiber-optic attenuator with an embedded monitoring port," IEEE Photon. Technol. Lett. 16, 1507-1509 (2004).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "Compact low crosstalk 1 × 2 wavelength selective switch architectures," in Conference on Optical Transmission, Switching, and Subsystems II, C. F. Lam, W. Gu, N. Hanik, and K. Oguchi, eds., Proc. SPIE 5625, 793-803 (2004).

S. Sumriddetchkajorn and K. Chaitavon, "A reconfigurable thin film filter-based 2 × 2 add-drop fiber-optic switch structure," IEEE Photon. Technol. Lett. 15, 930-932 (2003).
[CrossRef]

Chandrasekhar, S.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Chen, E.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Doerr, C. R.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Fuchs, D. T.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Giles, C. R.

C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J. (January-March 1999), pp. 207-229.

Gomez, L.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Holton, C.

C. Holton, "The past is future," Laser Focus World 54 (2003).

Jones, M. L.

Kim, H. K.

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Kim, M. J.

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Laskowski, E.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Lee, H. M.

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Lee, S. G.

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Pafchek, R.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Park, H. Y.

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Riza, N. A.

N. A. Riza and S. Sumriddetchkajorn, "Small tilt micromirror-based multiwavelength three-dimensional 2 × 2 fiber-optic switch structures," Opt. Eng. 39, 379-386 (2000).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, "Versatile multi-wavelength fiber-optic switch and attenuator structures using mirror manipulations," Opt. Commun. 169, 233-244 (1999).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, "Fault tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device," Appl. Opt. 37, 6355-6361 (1998).
[CrossRef]

Simon, M. E.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Spector, M.

C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J. (January-March 1999), pp. 207-229.

Stulz, L. W.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Sumriddetchkajorn, S.

S. Sumriddetchkajorn and K. Chaitavon, "Wavelength sensitive thin film filter-based variable fiber-optic attenuator with an embedded monitoring port," IEEE Photon. Technol. Lett. 16, 1507-1509 (2004).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "Compact low crosstalk 1 × 2 wavelength selective switch architectures," in Conference on Optical Transmission, Switching, and Subsystems II, C. F. Lam, W. Gu, N. Hanik, and K. Oguchi, eds., Proc. SPIE 5625, 793-803 (2004).

S. Sumriddetchkajorn and K. Chaitavon, "A reconfigurable thin film filter-based 2 × 2 add-drop fiber-optic switch structure," IEEE Photon. Technol. Lett. 15, 930-932 (2003).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, "Small tilt micromirror-based multiwavelength three-dimensional 2 × 2 fiber-optic switch structures," Opt. Eng. 39, 379-386 (2000).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, "Versatile multi-wavelength fiber-optic switch and attenuator structures using mirror manipulations," Opt. Commun. 169, 233-244 (1999).
[CrossRef]

N. A. Riza and S. Sumriddetchkajorn, "Fault tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device," Appl. Opt. 37, 6355-6361 (1998).
[CrossRef]

Wong-Foy, A.

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

Appl. Opt. (1)

Bell Labs Tech. J. (1)

C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J. (January-March 1999), pp. 207-229.

IEEE Photon. Technol. Lett. (3)

D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "A reconfigurable thin film filter-based 2 × 2 add-drop fiber-optic switch structure," IEEE Photon. Technol. Lett. 15, 930-932 (2003).
[CrossRef]

S. Sumriddetchkajorn and K. Chaitavon, "Wavelength sensitive thin film filter-based variable fiber-optic attenuator with an embedded monitoring port," IEEE Photon. Technol. Lett. 16, 1507-1509 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Laser Focus World 54 (1)

C. Holton, "The past is future," Laser Focus World 54 (2003).

Opt. Commun. (1)

N. A. Riza and S. Sumriddetchkajorn, "Versatile multi-wavelength fiber-optic switch and attenuator structures using mirror manipulations," Opt. Commun. 169, 233-244 (1999).
[CrossRef]

Opt. Eng. (2)

N. A. Riza and S. Sumriddetchkajorn, "Small tilt micromirror-based multiwavelength three-dimensional 2 × 2 fiber-optic switch structures," Opt. Eng. 39, 379-386 (2000).
[CrossRef]

M. J. Kim, H. K. Kim, H. M. Lee, H. Y. Park, and S. G. Lee, "Low-loss optical add drop multiplexer module using a 2 × 2 port optical device," Opt. Eng. 42, 2489-2490 (2003).
[CrossRef]

Other (4)

M. B. Frish, P. B. Keating, W. J. Kessler, and S. J. Davis, "Miniature monolithic optical add-drop multiplexer," U.S. Patent 6453087 (17 September 2002).

S. Sumriddetchkajorn and K. Chaitavon, "Compact low crosstalk 1 × 2 wavelength selective switch architectures," in Conference on Optical Transmission, Switching, and Subsystems II, C. F. Lam, W. Gu, N. Hanik, and K. Oguchi, eds., Proc. SPIE 5625, 793-803 (2004).

Y. Mei and T. Hsien, 100 GHz DWDM Filter Approval Sheet (Walsin THz Technology Corporation, Taiwan, 2002).

Micropositioner Product Datasheet (FiberTec, Ltd., Rolliweg 21, P.O. Box 448, CH-2543, Lengnua, BE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Proposed TF-based reconfigurable 1 × 2 FADS arranged in a transmissive configuration.

Fig. 2
Fig. 2

Large FADS switch network arrangement using proposed transmissive TF-based reconfigurable 1 × 2 FADS modules.

Fig. 3
Fig. 3

(Color online) Proposed TF-based reconfigurable 1 × 2 FADS in a retroreflective architecture.

Fig. 4
Fig. 4

Large FADS switch network arrangement using proposed TF-based reconfigurable 1 × 2 RFADS modules.

Fig. 5
Fig. 5

Diagram of experimental arrangement.

Fig. 6
Fig. 6

(Color online) Close-up view of our TF-based reconfigurable 1 × 2 TFADS experimental setup.

Fig. 7
Fig. 7

(Color online) Relationship between the measured optical loss and the operating wavelength for our TF-based reconfigurable 1 × 2 TFADS experimental setup.

Fig. 8
Fig. 8

(Color online) Measured optical coherent cross talk versus operating wavelength for our TF-based reconfigurable 1 × 2 TFADS experimental setup.

Fig. 9
Fig. 9

(Color online) Close-up view of TF-based reconfigurable 1 × 2 RFADS laboratory setup.

Fig. 10
Fig. 10

(Color online) Relationship between the measured optical loss and the operating wavelength for our TF-based reconfigurable 1 × 2 RFADS experimental setup.

Fig. 11
Fig. 11

(Color online) Relationships between the measured optical coherent cross talk and the operating wavelength for TF-based reconfigurable 1 × 2 RFADS experimental setup (a) when the mirror is out of the optical path and (b) when the mirror is in the optical path.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α 1 = { L coupl + L TF p = A , IN   to   Drop   for   λ = λ 1 L coupl + 2 L TF p + L M = B , IN   to   Thru   for   λ = λ 1 L coupl + L TF p = C , IN   to   Thru   for   λ λ 1 .
Loss 1 ( λ m ) = { A + C ( m 1 ) , IN   to   Drop B m + C ( N 1 ) , IN   to   Thru .
CCT ( λ m ) = { 10   log [ P Thru ( λ m ) / P Drop ( λ m ) ] , Drop   λ m   and   Mirror   OUT 10   log [ P Drop ( λ m ) / P Thru ( λ m ) ] , Thru   λ m   and   Mirror   IN .
CCT ( λ j , j m ) = 10   log [ P Drop ( λ j ) / P Thru ( λ j ) ]   Mirror   IN   or   OUT .
Loss 2 ( λ m ) = { L cir 1 2 + A + C ( m 1 ) , IN   to   Drop L cir 1 2 + L cir 2 3 + B + 2 C ( m 1 ) , IN   to   Thru ,
CCT k OUT ( λ m ) = 10   log [ P k ( λ m ) / P Drop ( λ m ) ] ,
CCT k IN ( λ m ) = 10   log [ P k ( λ m ) / P Thru ( λ m ) ] ,
CCT k IN,OUT ( λ j , j m ) = 10   log [ P k ( λ j ) / P Rej   ( λ j ) ] .

Metrics