Abstract

A fiber-optic high-temperature sensor is demonstrated by bonding a 45°-polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1170°C with a resolution of 0 .4  °C, demonstrating excellent potential for high-temperature measurement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Jones, and D. G. Barker, "Use of optical fiber thermometers in high temperature environment," in 11th IEEE International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2003), pp. 89-100.
    [CrossRef]
  2. R. R. Dils, "High-temperature optical fiber thermometer," J. Appl. Phys. 54, 1198-1201 (1983).
    [CrossRef]
  3. R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
    [CrossRef]
  4. L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
    [CrossRef]
  5. C. W. Meyer, "Effects of extraneous radiation on the performance of lightpipe radiation thermometers," in Proceedings of TEMPMEKO 2001 8th International Zymposium on Temperature and Thermal Measurements in Industry and Science, B.Fellmuth, J.Seidel, and G.Scholz, eds. (IMEKO, 2001), pp. 937-942.
  6. D. G. Barker and M. R. Jones, "Temperature measurements using a high-temperature blackbody optical fiber thermometer," J. Heat Transfer 125, 471-477 (2003).
    [CrossRef]
  7. J. L. Kenndey and N. Djeu, "Operation of Yb:YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A 100, 187-191 (2002).
    [CrossRef]
  8. Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
    [CrossRef]
  9. D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
    [CrossRef]
  10. A. Wang, S. Gollapudi, K. A. Murphey, R. G. May, and R. O. Claus, "Sapphire-fiber-based intrinsic Fabry-Perot interferometer," Opt. Lett. 17, 1021-1223 (1992).
    [CrossRef] [PubMed]
  11. A. Wang, S. Gollapudi, R. G. May, K. A. Murphey, and R. O. Claus, "Advances in sapphire-fiber-based intrinsic interferometric sensors," Opt. Lett. 17, 1544-1546 (1992).
    [CrossRef] [PubMed]
  12. A. Wang, S. Gollapudi, R. G. May, K. A. Murphey, and R. O. Claus, "Sapphire optical fiber-based interferometer for high temperature environmental applications," Smart Mater. Struct. 4, 147-151 (1995).
    [CrossRef]
  13. R. E. Wagner and C. R. Sandahl, "Interference effects in optical fiber connections," Appl. Opt. 21, 1381-1385 (1982).
    [CrossRef] [PubMed]
  14. F. Pérennès, P. C. Beard, and T. N. Mills, "Analysis of a low-finesse Fabry-Perot sensing interferometer illuminated by a multimode optical fiber," Appl. Opt. 38, 7026-7024 (1999).
    [CrossRef]
  15. Y. Zhu, Z. Huang, F. Shen, and A. Wang, "Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements," Opt. Lett. 30, 711-713 (2005).
    [CrossRef] [PubMed]
  16. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).
  17. J. Tapping and M. L. Reilly, "Index of refraction of sapphire between 24 and 1060 °C for wavelengths of 633 and 799 nm," J. Opt. Soc. Am. A 3, 610-616 (1986).
    [CrossRef]

2005 (1)

2003 (1)

D. G. Barker and M. R. Jones, "Temperature measurements using a high-temperature blackbody optical fiber thermometer," J. Heat Transfer 125, 471-477 (2003).
[CrossRef]

2002 (1)

J. L. Kenndey and N. Djeu, "Operation of Yb:YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A 100, 187-191 (2002).
[CrossRef]

1999 (3)

D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
[CrossRef]

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

F. Pérennès, P. C. Beard, and T. N. Mills, "Analysis of a low-finesse Fabry-Perot sensing interferometer illuminated by a multimode optical fiber," Appl. Opt. 38, 7026-7024 (1999).
[CrossRef]

1997 (1)

Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
[CrossRef]

1995 (1)

A. Wang, S. Gollapudi, R. G. May, K. A. Murphey, and R. O. Claus, "Sapphire optical fiber-based interferometer for high temperature environmental applications," Smart Mater. Struct. 4, 147-151 (1995).
[CrossRef]

1992 (2)

1986 (2)

R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
[CrossRef]

J. Tapping and M. L. Reilly, "Index of refraction of sapphire between 24 and 1060 °C for wavelengths of 633 and 799 nm," J. Opt. Soc. Am. A 3, 610-616 (1986).
[CrossRef]

1983 (1)

R. R. Dils, "High-temperature optical fiber thermometer," J. Appl. Phys. 54, 1198-1201 (1983).
[CrossRef]

1982 (1)

Barker, D. G.

D. G. Barker and M. R. Jones, "Temperature measurements using a high-temperature blackbody optical fiber thermometer," J. Heat Transfer 125, 471-477 (2003).
[CrossRef]

M. R. Jones, and D. G. Barker, "Use of optical fiber thermometers in high temperature environment," in 11th IEEE International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2003), pp. 89-100.
[CrossRef]

Beard, P. C.

Claus, R. O.

Dils, R. R.

R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
[CrossRef]

R. R. Dils, "High-temperature optical fiber thermometer," J. Appl. Phys. 54, 1198-1201 (1983).
[CrossRef]

Ding, Z.

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

Djeu, N.

J. L. Kenndey and N. Djeu, "Operation of Yb:YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A 100, 187-191 (2002).
[CrossRef]

D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
[CrossRef]

Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
[CrossRef]

Geist, J.

R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
[CrossRef]

Gollapudi, S.

Henry, D. M.

D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
[CrossRef]

Herringer, J. H.

D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
[CrossRef]

Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
[CrossRef]

Huang, Z.

Jones, M. R.

D. G. Barker and M. R. Jones, "Temperature measurements using a high-temperature blackbody optical fiber thermometer," J. Heat Transfer 125, 471-477 (2003).
[CrossRef]

M. R. Jones, and D. G. Barker, "Use of optical fiber thermometers in high temperature environment," in 11th IEEE International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2003), pp. 89-100.
[CrossRef]

Kenndey, J. L.

J. L. Kenndey and N. Djeu, "Operation of Yb:YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A 100, 187-191 (2002).
[CrossRef]

Kirby, R. K.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).

Lee, T. Y. R.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).

May, R. G.

Meyer, C. W.

C. W. Meyer, "Effects of extraneous radiation on the performance of lightpipe radiation thermometers," in Proceedings of TEMPMEKO 2001 8th International Zymposium on Temperature and Thermal Measurements in Industry and Science, B.Fellmuth, J.Seidel, and G.Scholz, eds. (IMEKO, 2001), pp. 937-942.

Mills, T. N.

Murphey, K. A.

Pérennès, F.

Reilly, M. L.

J. Tapping and M. L. Reilly, "Index of refraction of sapphire between 24 and 1060 °C for wavelengths of 633 and 799 nm," J. Opt. Soc. Am. A 3, 610-616 (1986).
[CrossRef]

R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
[CrossRef]

Sandahl, C. R.

Shen, F.

Shen, Y.

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

Tapping, J.

Taylor, R. E.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).

Tong, L.

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

Touloukian, Y. S.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).

Wagner, R. E.

Wang, A.

Ye, L.

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

Zhang, Z.

Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
[CrossRef]

Zhu, Y.

App. Phys. Lett. (1)

D. M. Henry, J. H. Herringer, and N. Djeu, "Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K," App. Phys. Lett. 74, 3447-3449 (1999).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (2)

R. R. Dils, "High-temperature optical fiber thermometer," J. Appl. Phys. 54, 1198-1201 (1983).
[CrossRef]

R. R. Dils, J. Geist, and M. L. Reilly, "Measurement of the silver freezing point with an optical fiber thermometer:proof of concept," J. Appl. Phys. 59, 1005-1012 (1986).
[CrossRef]

J. Heat Transfer (1)

D. G. Barker and M. R. Jones, "Temperature measurements using a high-temperature blackbody optical fiber thermometer," J. Heat Transfer 125, 471-477 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

L. Tong, Y. Shen, L. Ye, and Z. Ding, "A zirconia single-crystal fiber-optic sensor for contact measurement of temperatures above 2000 °C," Meas. Sci. Technol. 10, 607-611 (1999).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

Z. Zhang, J. H. Herringer, and N. Djeu, "Monolithic crystalline fiber optic temperature sensor," Rev. Sci. Instrum. 68, 2068-2070 (1997).
[CrossRef]

Sens. Actuators A (1)

J. L. Kenndey and N. Djeu, "Operation of Yb:YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A 100, 187-191 (2002).
[CrossRef]

Smart Mater. Struct. (1)

A. Wang, S. Gollapudi, R. G. May, K. A. Murphey, and R. O. Claus, "Sapphire optical fiber-based interferometer for high temperature environmental applications," Smart Mater. Struct. 4, 147-151 (1995).
[CrossRef]

Other (3)

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter (Plenum, 1977).

M. R. Jones, and D. G. Barker, "Use of optical fiber thermometers in high temperature environment," in 11th IEEE International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2003), pp. 89-100.
[CrossRef]

C. W. Meyer, "Effects of extraneous radiation on the performance of lightpipe radiation thermometers," in Proceedings of TEMPMEKO 2001 8th International Zymposium on Temperature and Thermal Measurements in Industry and Science, B.Fellmuth, J.Seidel, and G.Scholz, eds. (IMEKO, 2001), pp. 937-942.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System schematic.

Fig. 2
Fig. 2

Sensor head structure.

Fig. 3
Fig. 3

Sensor spectrum.

Fig. 4
Fig. 4

Angular dependence of signal intensity and fringe amplitude.

Fig. 5
Fig. 5

Fusion splice of silica fiber and sapphire fiber.

Fig. 6
Fig. 6

Reflected power versus number of arc.

Fig. 7
Fig. 7

Temperature response.

Fig. 8
Fig. 8

Sensor resolution at room temperature.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I total ( λ ) = I D ( λ ) + I B ( λ ) + I LED ( λ ) ( r couple + r side ) + I LED ( λ ) × [ r 1 + r 2 2 V r 1 r 2 cos 4 n ( T ) d ( T ) π λ ] ,
2 V r s 1 r s 2 I LED ( λ ) cos 4 n ( T ) d ( T ) π λ .
cos 4 n ( T ) d ( T ) π λ ,
I LED ( λ ) [ r 1 + r 2 2 V r 1 r 2 cos 4 n ( T ) d ( T ) π λ ] ,
OT = n ( T ) d ( T ) = 103.913 + 1.507 × 10 3 T + 3.484 × 10 7 T 2 ( μm ) ,
d ( T ) = ( 1 0.192 + 5.927 × 10 4 T + 2.142 × 10 7 T 2 2.207 × 10 11 T 3 ) d 0 ,
n ( T ) 633   nm = 1.76565 + 1.258 × 10 5 T + 4.06 × 10 9 T 2 ,
n ( T ) 799   nm = 1.75991 + 1.229 × 10 5 T + 3.10 × 10 9 T 2 ,
n ( T ) 850   nm = 1.75815 + 1.220 × 10 5 T + 2.81 × 10 9 T 2 .
S = d d T [ n ( T ) d ( T ) ]
= 1.507 × 10 3 + 6.968 × 10 7 T ( μm / ° C ) .
R RT = 2 δ S RT = 2 × 0.3   nm 1.524   nm / ° C = 0.4 °C ,

Metrics