Abstract

The dipole selection rule limits the maximum achievable efficiency in corrugated quantum well infrared photodetectors (C-QWIPs) to 50%. We consider what is believed to be a novel design that utilizes a resonant cavity enhancement technique to increase the efficiency beyond 50% by rotating the photon polarization at each pass around the cavity. Simulation results show that the quantum efficiency of this device can be enhanced up to 38% compared to that of the standard C-QWIP device.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser
Opt. Express 20(5) 5622-5628 (2012)

Study of grating performance for quantum well photodetectors

Jian Wang, Xiaoshuang Chen, Zhifeng Li, and Wei Lu
J. Opt. Soc. Am. B 27(11) 2428-2432 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription