Abstract

The dipole selection rule limits the maximum achievable efficiency in corrugated quantum well infrared photodetectors (C-QWIPs) to 50%. We consider what is believed to be a novel design that utilizes a resonant cavity enhancement technique to increase the efficiency beyond 50% by rotating the photon polarization at each pass around the cavity. Simulation results show that the quantum efficiency of this device can be enhanced up to 38% compared to that of the standard C-QWIP device.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
    [CrossRef]
  2. K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
    [CrossRef]
  3. J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors: theory and performance," J. Appl. Phys. 71, 3600-3610 (1992).
    [CrossRef]
  4. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  5. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  7. J. P. Kim and A. M. Sarangan, "Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method," Opt. Express 12, 4829-4834 (2004).
    [CrossRef] [PubMed]
  8. K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
    [CrossRef]
  9. M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  11. G. Hawkins and R. Hunneman, "The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6-40 μm)," Infrared Phys. Technol. 45, 69-79 (2004).
    [CrossRef]

2004 (2)

J. P. Kim and A. M. Sarangan, "Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method," Opt. Express 12, 4829-4834 (2004).
[CrossRef] [PubMed]

G. Hawkins and R. Hunneman, "The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6-40 μm)," Infrared Phys. Technol. 45, 69-79 (2004).
[CrossRef]

2000 (1)

K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
[CrossRef]

1996 (1)

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

1995 (1)

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

1992 (1)

J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors: theory and performance," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

1982 (1)

1956 (1)

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Andersson, J. Y.

J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors: theory and performance," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

Chen, C. J.

K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
[CrossRef]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

Choi, K. K.

K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
[CrossRef]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

Gaylord, T. K.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Hawkins, G.

G. Hawkins and R. Hunneman, "The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6-40 μm)," Infrared Phys. Technol. 45, 69-79 (2004).
[CrossRef]

Hunneman, R.

G. Hawkins and R. Hunneman, "The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6-40 μm)," Infrared Phys. Technol. 45, 69-79 (2004).
[CrossRef]

Kim, J. P.

Lundqvist, L.

J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors: theory and performance," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

Moharam, M. G.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Rytov, S. M.

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Sarangan, A. M.

Strite, S.

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Tidrow, M. Z.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

Tsui, D. C.

K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
[CrossRef]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for normal incident light coupling," Appl. Phys. Lett. 68, 1446-1448 (1996).
[CrossRef]

Infrared Phys. Technol. (1)

G. Hawkins and R. Hunneman, "The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6-40 μm)," Infrared Phys. Technol. 45, 69-79 (2004).
[CrossRef]

J. Appl. Phys. (3)

J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors: theory and performance," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

K. K. Choi, C. J. Chen, and D. C. Tsui, "Corrugated quantum well infrared photodetectors for material characterization," J. Appl. Phys. 88, 1612-1623 (2000).
[CrossRef]

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Sov. Phys. JETP (1)

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Other (3)

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Proposed schematic diagram of RCE-CQWIP.

Fig. 2
Fig. 2

Quantum efficiency as a function of wavelength in C-QWIP structure.

Fig. 3
Fig. 3

Quantum efficiency as a function of the thickness of bottom GaAs layer.

Fig. 4
Fig. 4

Comparison of quantum efficiency between C-QWIP and RCE-CQWIP structures.

Fig. 5
Fig. 5

Dependence on angle of incidence for the standard C-QWIP and the RCE-CQWIP.

Fig. 6
Fig. 6

Ray diagram of incident light at a different angle in the C-QWIP structure.

Fig. 7
Fig. 7

Schematic diagram of a form birefringence wave plate.

Fig. 8
Fig. 8

Phase difference between TE and TM polarized light as a function of grating duty cycle.

Fig. 9
Fig. 9

Phase difference as a function of grating thickness with 50 % duty cycle.

Fig. 10
Fig. 10

Phase difference as a function of wavelength at d = 2.2 μm .

Fig. 11
Fig. 11

Phase difference as a function of angle of incidence at d = 2.2 μm .

Fig. 12
Fig. 12

Schematic diagram of RCE-CQWIP using a form birefringence technique.

Fig. 13
Fig. 13

Quantum efficiency for the RCE-CQWIP with a form birefringence layer and the standard C-QWIP.

Fig. 14
Fig. 14

Quantum efficiency degradation in RCE-CQWIP with a form birefringence layer.

Fig. 15
Fig. 15

Diffraction efficiencies of the transmitted waves for a form birefringence layer.

Metrics