Abstract

When a full-field optical coherence tomography (OCT) system is used to extract tomographic images from a multilayer information carrier, the resulting images may suffer from interlayer modulations and parasitic patterns derived from interference fringes. We describe and analyze these negative influences that degrade the quality of extracted tomographic images and propose practical algorithms and methods to minimize them. The emphasis of the discussion will be the removal of the parasitic fringes produced by the imperfection of a CCD camera. The simulative and experimental results of image enhancement for multilayer tomography extraction using full-field OCT are provided.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," E.Wolf, ed., Progress in Optics (Elsevier Science B. V., 2002), Chap. 4.
  4. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  5. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathe, "Video-rate optical low-coherence reflectometry based on a linear smart detector array," Opt. Lett. 25, 102-104 (2000).
    [CrossRef]
  6. S. Bourquin, P. Seitz, and R. P. Salathe, "Optical coherence topography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001).
    [CrossRef]
  7. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  8. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
    [CrossRef]
  10. L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett. 27, 530-532 (2002).
    [CrossRef]
  11. B. E. Bouma and G. J. Tearney, "Applications," in Handbook of Optical Coherence Tomography (Dekker, 2002), Chap. 4.
  12. G. M. Dobre and A. Gh. Podoleanu, "Simultaneous optical coherence tomography-indocyyanine green dye fluorescence imaging system for investigation of the eye's fundus," Opt. Lett. 30, 58-60 (2005).
    [CrossRef] [PubMed]
  13. S. R. Chinn and E. A. Swanson, "Multilayer optical storage by low-coherence reflectometry," Opt. Lett. 21, 899-901 (1996).
    [CrossRef] [PubMed]
  14. S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
    [CrossRef]

2005 (2)

G. M. Dobre and A. Gh. Podoleanu, "Simultaneous optical coherence tomography-indocyyanine green dye fluorescence imaging system for investigation of the eye's fundus," Opt. Lett. 30, 58-60 (2005).
[CrossRef] [PubMed]

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

2003 (1)

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002 (2)

2001 (1)

2000 (1)

1998 (1)

1997 (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

B. E. Bouma and G. J. Tearney, "Applications," in Handbook of Optical Coherence Tomography (Dekker, 2002), Chap. 4.

Bourquin, S.

Cai, X.

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

Chang, S.

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

Dobre, G. M.

Drexler, W.

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Dubois, A.

Fercher, A. F.

A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," E.Wolf, ed., Progress in Optics (Elsevier Science B. V., 2002), Chap. 4.

Fercherl, A. F.

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grover, C. P.

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," E.Wolf, ed., Progress in Optics (Elsevier Science B. V., 2002), Chap. 4.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lebec, M.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

Monterosso, V.

Podoleanu, A. Gh.

Pullafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Saint-Jalmes, H.

Salathe, R. P.

Schman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

Seitz, P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn and E. A. Swanson, "Multilayer optical storage by low-coherence reflectometry," Opt. Lett. 21, 899-901 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

B. E. Bouma and G. J. Tearney, "Applications," in Handbook of Optical Coherence Tomography (Dekker, 2002), Chap. 4.

Vabre, L.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

Appl. Opt. (1)

Opt. Commun. (2)

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

S. Chang, X. Liu, X. Cai, and C. P. Grover, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef]

Opt. Lett. (6)

Rep. Prog. Phys. (1)

A. F. Fercherl, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (3)

A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," E.Wolf, ed., Progress in Optics (Elsevier Science B. V., 2002), Chap. 4.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

B. E. Bouma and G. J. Tearney, "Applications," in Handbook of Optical Coherence Tomography (Dekker, 2002), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Imaging of a multilayer information carrier by a camera.

Fig. 2
Fig. 2

Phase modulation phenomenon. (a) Structure of a sample consisting of five layers, T 1T 5. (b) Images grabbed by a full-field OCT system at different depths. (c) Cross-sectional images with the background subtracted.

Fig. 3
Fig. 3

Some examples of lateral interference fringe patterns within a resolution layer of a full-field OCT system. A1, large particle that has a flat front surface; A2, small particle that has a curved front surface; A3, small particle that has two flat front surfaces; A4, smaller particle that reflects two interference fringes; A5 and A6, smallest particles that reflect only one interference fringe.

Fig. 4
Fig. 4

Images with (a) interference fringes and (b) parasitic fringes.

Fig. 5
Fig. 5

Sinusoid curves captured by a camera (solid curve) and created by mathematics (dashed curve).

Fig. 6
Fig. 6

Parasitic patterns.

Fig. 7
Fig. 7

Image and its degraded version (d = 0.1, γ = 1.4).

Fig. 8
Fig. 8

Tomographic images (a) with and (b) without camera calibration.

Fig. 9
Fig. 9

Full-field OCT system. SLD, superluminescent diode; NF, neutral filter.

Fig. 10
Fig. 10

(a) Four-layer sample and (b) its directly reflected image.

Fig. 11
Fig. 11

(a) Tomographic images of the first layer before and after removing the fringes. (b) Tomographic images of the second layer before and after removing the fringes. (c) Tomographic images of the third layer before and after removing the fringes. (d) Tomographic images of the fourth layer before and after removing the fringes.

Fig. 12
Fig. 12

Tomographic image of the fourth layer processed with the interlayer demodulation procedure.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

R = R 1 + T 1 R 2 T 1 + T 1 T 2 R 3 T 2 T 1 + T 1 T 2 T 3 R 4 T 3 T 2 T 1 + + M = R i j = 1 i 1 T j 2 + M ,
E S ( t ) = S S ( ω ) exp ( i ω t ) d ω ,
E R ( t τ ) = S R ( ω ) exp [ i ω ( t τ ) ] d ω ,
I d ( τ ) = E S 2 + E R 2 + 1 / π Re S S ( ω ) S R ( ω ) × exp ( i ω t ) d ω .
S ( ω ) = S 0 exp [ 2 ln 2 ( ω ω 0 ) 2 / Δ ω 2 ] ,
I d ( τ ) = E S 2 + E R 2 + ( S S 0 S R 0 Δ ω / 4 π ln 2 ) × exp [ Δ ω 2 τ 2 / ( 16 ln 2 ) ] cos ( ω 0 τ ) = I S + I R + I T exp [ 4 ln 2 τ 2 / ( Δ τ 2 ) ] cos ( ω 0 τ ) ,
τ = 2 ( l R l S ) / c .
I d ( τ ) = I S + I R + I T i exp [ 4 ln 2 ( τ τ i ) 2 / ( Δ τ 2 ) ] cos [ ω 0 ( τ τ i ) ] ,
L L > 0.44 λ 2 / Δ λ ,
I d ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) ] .
I 0 ( x , y ) = I S ( x , y ) + I R ( x , y ) ,
A i ( x , y ) = 2 R i ( x , y ) j = 1 i 1 T j ( x , y ) 2 R e ( x , y ) .
A i ( x , y ) = [ S 1 ( x , y ) 2 ( x , y ) + S 2 ( x , y ) 2 ] 1 / 2 ,
I d 1 ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) 2 φ ] ,
I d 2 ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) φ ] ,
I d 3 ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) ] ,
I d 4 ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) + φ ] ,
I d 5 ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos [ ϕ ( x , y ) + 2 φ ] .
A i ( x , y ) = { [ I d 2 ( x , y ) I d 4 ( x , y ) 2 sin φ ] 2 + [ 2 I d 3 ( x , y ) I d 5 ( x , y ) I d 1 ( x , y ) 4 sin 2 φ ] 2 } 1 / 2 ,
cos φ = { I d 5 ( x , y ) I d 1 ( x , y ) 2 I d 4 ( x , y ) I d 2 ( x , y ) } 1 / 2 .
f n = d + k F ( f ) ,
F ( f ) = sgn ( f ) | f [ cos ( ω + Δ ω , φ + Δφ ) ] | γ ,
I d = ( R + R e ) 2 = R 2 + R e 2 + R e R * + R R e * .
R e R * + R R e * = R e ( R i j = 1 i 1 T j    2 ) * + R i j = 1 i 1 T j 2 R e * .
I d ( x , y ) = I 0 ( x , y ) + A i ( x , y ) cos ϕ ( x , y ) ,
I 0 ( x , y ) = R 2 ( x , y ) + R e 2 ( x , y ) ,
A i ( x , y ) = 2 R i ( x , y ) j = 1 i 1 T j ( x , y ) 2 R e ( x , y ) .
R i ( x , y ) = A i ( x , y ) / { K r j = 1 i 1 [ 1 R j ( x , y ) ] 2 } ,
R i ( x , y ) = A i ( x , y ) w R i 1 ( x , y ) ,

Metrics