Abstract

We propose to evaluate infrared lenses with a dedicated analyzer having the same mechanical interface as the usual cameras. The proposed analysis is based on a wavefront measurement and allows a diagnostic of possible internal defects of the analyzed lens. The infrared lens analyzer described is constituted with a quadriwave lateral shearing interferometer and works with a blackbody light. We describe the response of this interferometer and an innovative method to obtain the wavefront under test. We finally present the experimental analysis of long-wavelength infrared lenses and the particular case of a modified lens that generates a large spherical aberration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Holst, Electro-Optical Imaging System Performance (JCD, 1995).
  2. M. C. Dudzik, The Infrared and Electro-Optical Systems Handbook (ERIM, SPIE, 1993), Vol. 4.
  3. M. N. Akram, "A design study of dual-field-of-view imaging systems for the 3-5 μm waveband utilizing focal-plane array," J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
    [Crossref]
  4. D. Malacara, Optical Shop Testing (Wiley-Interscience, 1992).
  5. J. C. Chanteloup, "Multiple-wave lateral shearing interferometry for wave-front sensing," Appl. Opt. 44, 1559-1571 (2005).
    [Crossref]
  6. M. P. Rimmer, "Method for evaluating lateral shearing interferograms," Appl. Opt. 13, 623-629 (1974).
  7. J. Primot, "Three-wave lateral shearing interfermometer," Appl. Opt. 32, 6242-6249 (1993).
  8. J. Primot and L. Sogno, "Achromatic three-wave (or more) lateral shearing interferometer," J. Opt. Soc. Am. A 12, 2679-2685 (1995).
  9. P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultaviolet carrier-frequency shearing interferometry of a lithographic four mirror-optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).
    [Crossref]
  10. J. Primot, "Theoretical description of Shack Hartmann wave-front sensor," Opt. Commun. 222, 81-92 (2003).
    [Crossref]
  11. J. Primot and N. Guérineau, "Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard," Appl. Opt. 39, 5715-5720 (2000).
  12. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-wave lateral shearing interferometry," in Optical Fabrication, Testing, and Metrology II, A.Duparré, R.Geyl, L.Wang, eds., Proc. SPIE 5965,331-338 (2005).
  13. J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, "Single-shot wave-front measurements of high intensity ultrashort laser pulses with a three-wave interferometer," Opt. Lett. 23, 621-623 (1998).
  14. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, "Wavefront correction of femtosecond terawatt lasers by deformable mirrors," Opt. Lett. 23, 1043-1045 (1998).
  15. J. Queneuille, F. Druon, A. Maksimchuk, G. Chériaux, G. Mourou, and K. Nemoto, "Second-harmonic generation and wavefront correction of a terawatt laser system," Opt. Lett. 25, 508-510 (2000).
  16. V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
    [Crossref]
  17. B. Wattellier, C. Sauteret, J. Chanteloup, and A. Migus, "Beam-focus shaping by use of programmable phase-only filters: application to an ultralong focal line," Opt. Lett. 27, 213-215 (2002).
  18. B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, "Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics," Opt. Lett. 29, 2494-2496 (2004).
    [Crossref]
  19. F. Roddier, "Wavefront sensing and the irradiance transport equation," Appl. Opt. 29, 1402-1404 (1990).
  20. K. Ichikawa, A. W. Lohmann, and M. Takeda, "Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments," Appl. Opt. 27, 3433-3436 (1988).
  21. N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun. 49, 6-10 (1984).
    [Crossref]
  22. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).
  23. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245-247 (2005).
    [Crossref]
  24. V. Ronchi, "Forty years of history of a grating interferometer," Appl. Opt. 3, 437-451 (1964).
  25. K. R. Freischlad and C. L. Koliopoulos, "Modal estimation of a wavefront from difference measurements using the discrete Fourier transform," J. Opt. Soc. Am. A 3, 1852-1861 (1986).
  26. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974), Chap. 25.

2005 (2)

2004 (1)

2003 (2)

M. N. Akram, "A design study of dual-field-of-view imaging systems for the 3-5 μm waveband utilizing focal-plane array," J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[Crossref]

J. Primot, "Theoretical description of Shack Hartmann wave-front sensor," Opt. Commun. 222, 81-92 (2003).
[Crossref]

2002 (1)

2001 (1)

V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
[Crossref]

2000 (3)

1998 (2)

1995 (1)

1993 (1)

1990 (1)

1988 (1)

1986 (1)

1984 (1)

N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun. 49, 6-10 (1984).
[Crossref]

1982 (1)

1974 (1)

1964 (1)

Abdeli, K.

Akram, M. N.

M. N. Akram, "A design study of dual-field-of-view imaging systems for the 3-5 μm waveband utilizing focal-plane array," J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[Crossref]

Bokor, J.

P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultaviolet carrier-frequency shearing interferometry of a lithographic four mirror-optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).
[Crossref]

Chanteloup, J.

Chanteloup, J. C.

Chériaux, G.

Cohen, M.

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245-247 (2005).
[Crossref]

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-wave lateral shearing interferometry," in Optical Fabrication, Testing, and Metrology II, A.Duparré, R.Geyl, L.Wang, eds., Proc. SPIE 5965,331-338 (2005).

Druon, F.

Dudzik, M. C.

M. C. Dudzik, The Infrared and Electro-Optical Systems Handbook (ERIM, SPIE, 1993), Vol. 4.

Faure, J.

Freischlad, K. R.

Fuchs, J.

Goldberg, K. A.

P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultaviolet carrier-frequency shearing interferometry of a lithographic four mirror-optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).
[Crossref]

Guérineau, N.

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245-247 (2005).
[Crossref]

J. Primot and N. Guérineau, "Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard," Appl. Opt. 39, 5715-5720 (2000).

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-wave lateral shearing interferometry," in Optical Fabrication, Testing, and Metrology II, A.Duparré, R.Geyl, L.Wang, eds., Proc. SPIE 5965,331-338 (2005).

Haefner, C.

Hanson, R. J.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974), Chap. 25.

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance (JCD, 1995).

Ichikawa, K.

Ina, H.

Kobayashi, S.

Koliopoulos, C. L.

Lawson, C. L.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974), Chap. 25.

Lohmann, A. W.

Maksimchuk, A.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley-Interscience, 1992).

Migus, A.

Mourou, G.

Nantel, M.

Naulleau, P. P.

P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultaviolet carrier-frequency shearing interferometry of a lithographic four mirror-optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).
[Crossref]

Nees, J.

Nemoto, K.

Nugumanov, A. M.

V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
[Crossref]

Pépin, H.

Primot, J.

Queneuille, J.

Rimmer, M. P.

Roddier, F.

Ronchi, V.

Sauteret, C.

Smirnov, R. V.

V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
[Crossref]

Sogno, L.

Sokolov, V. I.

V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
[Crossref]

Streibl, N.

N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun. 49, 6-10 (1984).
[Crossref]

Takeda, M.

Vdovin, G.

Velghe, S.

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245-247 (2005).
[Crossref]

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-wave lateral shearing interferometry," in Optical Fabrication, Testing, and Metrology II, A.Duparré, R.Geyl, L.Wang, eds., Proc. SPIE 5965,331-338 (2005).

Wattellier, B.

Zou, J. P.

Appl. Opt. (7)

J. Opt. A: Pure Appl. Opt. (1)

M. N. Akram, "A design study of dual-field-of-view imaging systems for the 3-5 μm waveband utilizing focal-plane array," J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultaviolet carrier-frequency shearing interferometry of a lithographic four mirror-optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).
[Crossref]

Opt. Commun. (3)

J. Primot, "Theoretical description of Shack Hartmann wave-front sensor," Opt. Commun. 222, 81-92 (2003).
[Crossref]

N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun. 49, 6-10 (1984).
[Crossref]

V. I. Sokolov, A. M. Nugumanov, and R. V. Smirnov, "Phase conjugation of broadband light at three-wave mixing in a nonlinear crystal," Opt. Commun. 189, 377-387 (2001).
[Crossref]

Opt. Lett. (6)

Other (5)

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974), Chap. 25.

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-wave lateral shearing interferometry," in Optical Fabrication, Testing, and Metrology II, A.Duparré, R.Geyl, L.Wang, eds., Proc. SPIE 5965,331-338 (2005).

D. Malacara, Optical Shop Testing (Wiley-Interscience, 1992).

G. C. Holst, Electro-Optical Imaging System Performance (JCD, 1995).

M. C. Dudzik, The Infrared and Electro-Optical Systems Handbook (ERIM, SPIE, 1993), Vol. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Camera configuration showing the superposition of the exit pupil of the lens and the cold shield of the cooled detector.

Fig. 2
Fig. 2

Analyzer configuration using an interferometer placed in the exit pupil of the lens under test and a detector to record the interferogram. The field aberrations can be tested by changing the inclination of the collimated light before the lens analyzer.

Fig. 3
Fig. 3

Recommended modified Hartmann mask and the replication geometry.

Fig. 4
Fig. 4

Experimental long-wavelength infrared interferogram generated by a QWLSI.

Fig. 5
Fig. 5

Undersampled focal spots of (a) the reference lens and (b) the aberrated lens.

Fig. 6
Fig. 6

Reconstructed wavefront maps of the (a) reference lens and the (b) aberrated lens on 240 × 240 points. The pupil diameter is equal to 7.5 mm. The disymmetry in (b) is due to an additional coma aberration.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A ( r ) = exp [ i k W ( r ) ] ,
A i ( r ) = exp { i [ k W ( r ) + k i · r ] } ,
I 0 ( r ) = | i = 1 4 A i ( r ) | 2 = 4 + i , j = 1 i j 4 exp [ i ( k i k j ) · r ] .
I L ( r ) = I 0 ( r ) L [ I 0 ( r ) · W ( r ) + I 0 ( r ) · 2 W ( r ) ] ,
I L ( r ) = 4 f ( r ) + i , j = 1 i j 4 [ f ( r ) i L k i k j α ij W x i j ( r ) ] × exp [ i ( k i k j ) · r ] ,
f ( r ) = 1 L 2 W ( r ) .
FT ( I L ) ( u ) = 4 FT ( f ) ( u ) + i , j = 1 i j 4 [ FT ( f ) ( u ) i L k i k j × α i j FT ( W x i j ) ( u ) ] δ [ ( k i k j ) u ] ,
FT [ W x m ] = 2 i π u m FT ( W ) ,
E [ FT ( W ) ] = m = 1 4 1 σ m       2 | FT ( W x m ) 2 i π u m FT ( W ) | 2 ,
FT ( W e ) = i 2 π m = 1 4 ( u m / σ m       2 ) FT ( W / x m ) m = 1 4 u m       2 / σ m       2 .

Metrics