Abstract

We have developed plasma chemical vaporization machining by using a microelectrode for the fabrication of small complex-shaped optical surfaces. In this method, a 0.5  mm diameter pipe microelectrode, from which processing gas is drawn in, generates a small localized plasma that is scanned over a workpiece under numerical computer control to shape a desired surface. A 12   mm×12   mm nonaxisymmetric mirror with a maximum depth of approximately 3   μm was successfully fabricated with a peak-to-valley shape accuracy of 0 .04   μm in an area excluding the edges of the mirror. The average surface roughness was 0 .58   nm, which is smooth enough for optical use.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).
  2. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.
  3. G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.
  4. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, "Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication," Appl. Opt. 37, 5198-5210 (1998).
    [CrossRef]
  5. Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
    [CrossRef]
  6. Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
    [CrossRef]
  7. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, "Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode," Appl. Opt. 41, 3971-3977 (2002).
    [CrossRef] [PubMed]
  8. K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, and Y. Mori, "Laser beam intensity profile transformation with a fabricated mirror," Appl. Opt. 36, 551-557 (1997).
    [CrossRef] [PubMed]

2002 (1)

2000 (2)

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
[CrossRef]

1998 (1)

1997 (1)

Bigl, F.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Boehm, G.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Bollinger, D.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Ebi, M.

Endo, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Frank, W.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Fujii, T.

Gallatin, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Goto, N.

Inagaki, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Itoh, H.

Kakiuchi, H.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Kataoka, T.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Kobayashi, T.

Mori, Y.

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, "Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode," Appl. Opt. 41, 3971-3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, "Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication," Appl. Opt. 37, 5198-5210 (1998).
[CrossRef]

K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, and Y. Mori, "Laser beam intensity profile transformation with a fabricated mirror," Appl. Opt. 36, 551-557 (1997).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Nemoto, K.

Nickel, A.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Samuels, J.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Sano, Y.

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, "Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode," Appl. Opt. 41, 3971-3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, "Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication," Appl. Opt. 37, 5198-5210 (1998).
[CrossRef]

Schindler, A.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Shibata, N.

Steinberg, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Takino, H.

Tanaka, H.

Thomas, H. J.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Weiser, M.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Yamamura, K.

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, "Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode," Appl. Opt. 41, 3971-3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, "Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication," Appl. Opt. 37, 5198-5210 (1998).
[CrossRef]

K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, and Y. Mori, "Laser beam intensity profile transformation with a fabricated mirror," Appl. Opt. 36, 551-557 (1997).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Yamauchi, K.

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Yoshii, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

Zarowin, C.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Appl. Opt. (3)

Rev. Sci. Instrum. (2)

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, "Development of plasma chemical vaporization machining," Rev. Sci. Instrum. 71, 4627-4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, "The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication," Rev. Sci. Instrum. 71, 4620-4626 (2000).
[CrossRef]

Other (3)

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, "Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE)," in Advanced Optical Manufacturing and Testing, L.R.Baker, P.B.Reid, and G.M.Sanger, eds., Proc. SPIE 1333,44-57 (1990).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, "Plasma CVM (chemical vaporization machining)--a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions," in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78-87.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, "Plasma jet chemical etching--a tool for the figuring of optical precision aspheres," in Proceedings of the Ninth International Conference on Production Engineering--Precision Science and Technology for Perfect Surfaces, Y.Furukawa, Y.Mori, and T.Kataoka, eds. (Japan Society for Precision Engineering, 1999), pp. 231-236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a plasma CVM device with a microelectrode.

Fig. 2
Fig. 2

SEM image of the tip of the microelectrode.

Fig. 3
Fig. 3

Removal characteristics of a plasma CVM device with a microelectrode. Shape profiles of the removal marks in the case of a stationary workpiece are shown. Solid curve, drawing in of process gas (developed method); FWHM is 0.85   mm . Dashed curve, blowing out of the process gas (previous method); FWHM is 1 .20   mm .

Fig. 4
Fig. 4

Area removed by using microelectrode. (a) Path of the electrode over the workpiece surface. (b) Cross section of the removed area passing through the origin of axes shown in (a).

Fig. 5
Fig. 5

Surface data used for fabrication of the nonaxisymmetric mirror.

Fig. 6
Fig. 6

Schematic of the principle of the shaping method.

Fig. 7
Fig. 7

Schematic of a cross section of the desired shape cut through (a) the Z n and (b) the Z n + 1 planes. The solid lines and the dotted lines are the scanning paths of the electrode with removal and without removal, respectively.

Fig. 8
Fig. 8

Simulation result of fabricated mirror shape and error shape relative to the desired shape. Cross-sectional shapes along the diagonal line passing through the center of the mirror are shown. This result is obtained assuming that the mirror is fabricated by using a plasma having a removal mark with a FWHM of 4.2   mm .

Fig. 9
Fig. 9

Simulation results showing the relationship between the FWHM of a removal mark and the PV shape accuracy of the mirror surface. Calculations were conducted assuming that 0 .1   μm thick layers were removed.

Fig. 10
Fig. 10

Fabrication results. (a) Fabricated mirror shape, (b) error shape.

Fig. 11
Fig. 11

Surface data used for the second mirror. In the second fabrication process the surface data within an area of 15   mm × 15   mm were used.

Fig. 12
Fig. 12

Surface error of the second fabricated mirror obtained with a correction process.

Fig. 13
Fig. 13

Surface roughness measured by an AFM.

Metrics