Abstract

On-chip spectrometry will play a leading role in the development of micro-optofluidic systems for analytical chemistry. Integrated spectrometers fabricated using a polymer-on-silicon platform have been designed, fabricated, and characterized. Reflective grating designs have been implemented using a recursive algorithm to calculate the facet positions as described by McGreer [Appl. Opt. 35, 5904 (1996)]. It is shown that the free spectral range, the output focal plane geometry, and the linear dispersion can be selected with a high degree of control independently of the chosen grating order. The polymer-on-silicon platform facilitates integration with microfluidic circuits and cost-efficient batch fabrication.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Verpoorte and N. F. De Rooij, "Micro fluidics meet MEMS," Proc. IEEE 91, 930-953 (2003).
    [CrossRef]
  2. K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
    [CrossRef] [PubMed]
  3. M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
    [CrossRef]
  4. T. A. Kwa and R. F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques," Sens. Actuators A 31, 259-266 (1992).
    [CrossRef]
  5. P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
    [CrossRef]
  6. D. Sander and J. Müller, "Self-focusing phase transmission grating for an integrated optical spectrometer," Sens. Actuators A 88, 1-9 (2001).
    [CrossRef]
  7. A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.
  8. H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
    [CrossRef]
  9. J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).
  10. MicroChem, "NANOTM SU-8 negative tone photoresist. Formulations 2-25," Datasheet, Rev. 2/02, www.microchem.com.
  11. B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
    [CrossRef]
  12. H. A. Rowland, "On concave gratings for optical purposes," Philos. Mag. 16, 197-210 (1883).
  13. M. Bom and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  14. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904-5910 (1996).
    [CrossRef] [PubMed]
  15. R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
    [CrossRef]
  16. R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
    [CrossRef]

2005

H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
[CrossRef]

2004

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

2003

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

E. Verpoorte and N. F. De Rooij, "Micro fluidics meet MEMS," Proc. IEEE 91, 930-953 (2003).
[CrossRef]

2001

D. Sander and J. Müller, "Self-focusing phase transmission grating for an integrated optical spectrometer," Sens. Actuators A 88, 1-9 (2001).
[CrossRef]

1996

M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904-5910 (1996).
[CrossRef] [PubMed]

1994

R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
[CrossRef]

1992

T. A. Kwa and R. F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques," Sens. Actuators A 31, 259-266 (1992).
[CrossRef]

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

1991

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).

1883

H. A. Rowland, "On concave gratings for optical purposes," Philos. Mag. 16, 197-210 (1883).

Anderer, B.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).

Bilenberg, B.

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

Bom, M.

M. Bom and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Borreman, A.

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Clausen, A.

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

Clemens, P. C.

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

De Rooij, N. F.

E. Verpoorte and N. F. De Rooij, "Micro fluidics meet MEMS," Proc. IEEE 91, 930-953 (2003).
[CrossRef]

Deri, R. J.

R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
[CrossRef]

Diemeer, M. B. J.

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Dijaili, S. P.

R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
[CrossRef]

Driessen, A.

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Ehrfeld, W.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).

Huang, H.-C.

H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
[CrossRef]

Kallman, J. S.

R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
[CrossRef]

Klank, H.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Kok, A. A. M.

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Kristensen, A.

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

Kutter, J. P.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Kwa, T. A.

T. A. Kwa and R. F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques," Sens. Actuators A 31, 259-266 (1992).
[CrossRef]

Lin, H.-C.

H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
[CrossRef]

März, R.

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

McGreer, K. A.

Mogensen, K. B.

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

Mohr, J.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).

Müller, J.

D. Sander and J. Müller, "Self-focusing phase transmission grating for an integrated optical spectrometer," Sens. Actuators A 88, 1-9 (2001).
[CrossRef]

Musa, S.

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Nielsen, T.

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

Reichelt, A.

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

Rowland, H. A.

H. A. Rowland, "On concave gratings for optical purposes," Philos. Mag. 16, 197-210 (1883).

Sander, D.

D. Sander and J. Müller, "Self-focusing phase transmission grating for an integrated optical spectrometer," Sens. Actuators A 88, 1-9 (2001).
[CrossRef]

Schneider, H. W.

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

Smit, M. K.

M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

Tsao, S.-L.

H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

Verpoorte, E.

E. Verpoorte and N. F. De Rooij, "Micro fluidics meet MEMS," Proc. IEEE 91, 930-953 (2003).
[CrossRef]

Wolf, E.

M. Bom and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

T. A. Kwa and R. F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques," Sens. Actuators A 31, 259-266 (1992).
[CrossRef]

Appl. Opt.

Electrophoresis

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

IEEE Photon Technol. Lett.

P. C. Clemens, R. März, A. Reichelt, and H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon Technol. Lett. 4, 886-887 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

R. J. Deri, J. S. Kallman, and S. P. Dijaili, "Quantitative analysis of integrated optic waveguide spectrometers," IEEE Photon. Technol. Lett. 6, 242-244 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

J. Micromech. Microeng.

B. Bilenberg, T. Nielsen, A. Clausen, and A. Kristensen, "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics," J. Micromech. Microeng. 14, 814-818 (2004).
[CrossRef]

Opt. Commun.

H.-C. Lin, H.-C. Huang, and S.-L. Tsao, "Tolerance analysis of 4 × 4 SU-8 polymer array waveguide grating," Opt. Commun. 250, 69-76 (2005).
[CrossRef]

Philos. Mag.

H. A. Rowland, "On concave gratings for optical purposes," Philos. Mag. 16, 197-210 (1883).

Proc. IEEE

E. Verpoorte and N. F. De Rooij, "Micro fluidics meet MEMS," Proc. IEEE 91, 930-953 (2003).
[CrossRef]

Sens. Actuators

D. Sander and J. Müller, "Self-focusing phase transmission grating for an integrated optical spectrometer," Sens. Actuators A 88, 1-9 (2001).
[CrossRef]

T. A. Kwa and R. F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques," Sens. Actuators A 31, 259-266 (1992).
[CrossRef]

Sens. Actuators A

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep etching lithography with syncrotron radiation," Sens. Actuators A 25-27, 571-575 (1991).

Other

MicroChem, "NANOTM SU-8 negative tone photoresist. Formulations 2-25," Datasheet, Rev. 2/02, www.microchem.com.

M. Bom and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

A. A. M. Kok, S. Musa, A. Borreman, M. B. J. Diemeer, and A. Driessen, "Completely multimode arrayed waveguide grating-based wavelength demultiplexers," in The IEEE Region 8 EUROCON 2003, Computer as a Tool (IEEE, 2003), pp. 422-426.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top view of a waveguide-based microspectrometer (right) with the chip facets and input–output fibers shown. Light is coupled from the input fiber to the on-chip input waveguides, which function as the input slit. In the slab the light expands in the plane of the spectrometer. Upon reaching the grating, different wavelengths are diffracted in different directions (shown with gray-scale arrows) and focused in the output focal plane, where they are coupled to the output waveguides and guided to the output fiber for analysis. The flat-field output makes the spectrometer ideal for coupling into a CCD array. The inset on the left shows a scanning electron micrograph of a fabricated grating.

Fig. 2
Fig. 2

Measured spectrum for a spectrometer with a design order of m = 9 and for outputs no. 3 and 7, respectively. For output no. 3, the peak at λ = 697 nm corresponds to the design order; the peaks at λ = 618 and 794 nm correspond to m + 1 and m - 1 , respectively. Since we used output no. 3 for the spectrum shown, the central peak is displaced from the central wavelength of λ C = 730 nm . The positions of the peaks are used to determine the free spectral range of the spectrometer to be 97 and 79 nm for the m - 1 and m + 1 peaks, respectively. The best transmission is - 20 dB at λ = 925 nm , and the peak is raised more than 20 dB compared to the background. The linear dispersion is determined by moving the output fiber, shown here for output no. 7, i.e., a 400 μm translation in the output focal plane. The design order peak moves from λ = 697 to λ = 657 nm , corresponding to a linear dispersion of 10 μm / nm .

Fig. 3
Fig. 3

Measured linear dispersion and FSR for spectrometers with design orders of m = 3 , 5 , 7 , 9 , and 12. The FSR is defined as the spectral distance from the peak corresponding to m and m −1 (see Fig. 2), and calculated values are from FSR = λ C / ( m - 1 ) . For m = 3 , the FSR is so large that the peaks for m + 1 and m - 1 fall outside the span of the source.

Equations (62)

Equations on this page are rendered with MathJax. Learn more.

SiO 2
SiO 2
40 μm
2.7 μm
( 365 nm )
R = λ / Δλ
Δλ
L = 14 mm
15 mm × 20 mm
SU - 8 ( n = 1.588 )
λ = 800 nm
λ C = 730 nm
10 μm / nm
s = 100 μm
s / δλ
δλ
FSR = λ C / ( m ± 1 ) ,
m + 1
λ C
m - 1
20 dB
20 dB
2.5 dB
3.5 dB
λ = 900 nm
3.5 dB
1.7 dB
δλ
10.3 μm / nm
10.0 μm / nm
4.5 nm
R = λ / Δλ = | m | N
| m | N
d = 2.7 μm
m = 3
d = 10.8 μm
m = 12
185 < R < 215
20 dB
R 200
m = 9
λ = 697 nm
λ = 618
794 nm
m + 1
m - 1
λ C = 730 nm
79 nm
m - 1
m + 1
- 20 dB
λ = 925 nm
20 dB
400 μm
λ = 697
λ = 657 nm
10 μm / nm
m = 3 , 5 , 7 , 9
FSR = λ C / ( m - 1 )
m = 3
m + 1
m - 1

Metrics