Abstract

Effective multiplexing for a very large number of fiber-optic fiber-Bragg-grating-based Fabry–Perot (FBGFP) sensors is proposed that is based on wavelength division multiplexing (WDM) and spatial-frequency division multiplexing (SFDM). For WDM, FBGFP sensors are arranged in different wavelength domains formed by a series of chirped fiber Bragg gratings with different central wavelengths while the sensors with different cavity lengths within the same wavelength domain are multiplexed by use of SFDM because they have different spatial frequencies as a result of their different cavity lengths. In principle, a thousand FBGFP sensors could be multiplexed with such an approach. The experimental results show that a strain accuracy of better than ±10με has been achieved with little cross talk.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, "Overview of fiber optic sensors," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002), Chap. 1.
    [CrossRef]
  2. H. F. Taylor, "Fiber optic sensors based upon the Fabry-Perot interferometer," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002).
    [CrossRef]
  3. Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
    [CrossRef]
  4. Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
    [CrossRef]
  5. Y. J. Rao and D. A. Jackson, "Universal fiber-optic point sensor system for quasi-static absolute measurements of multi-parameters exploiting low coherence interrogation," J. Lightwave Technol. 14, 592-600 (1996).
    [CrossRef]
  6. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
    [CrossRef]
  7. C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
    [CrossRef]
  8. Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
    [CrossRef]
  9. Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
    [CrossRef]
  10. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
    [CrossRef]
  11. Y. J. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  12. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
    [CrossRef]

2005 (1)

Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
[CrossRef]

2004 (1)

C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
[CrossRef]

2002 (1)

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

1997 (1)

Y. J. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

1996 (3)

Y. J. Rao and D. A. Jackson, "Universal fiber-optic point sensor system for quasi-static absolute measurements of multi-parameters exploiting low coherence interrogation," J. Lightwave Technol. 14, 592-600 (1996).
[CrossRef]

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

1995 (1)

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

1994 (1)

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

1992 (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

Bennion, I.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Brady, G.

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Fernando, G. F.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Huang, S. L.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Jackson, D. A.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

Y. J. Rao and D. A. Jackson, "Universal fiber-optic point sensor system for quasi-static absolute measurements of multi-parameters exploiting low coherence interrogation," J. Lightwave Technol. 14, 592-600 (1996).
[CrossRef]

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

Jiang, J.

Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
[CrossRef]

C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Jones, R.

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

Kalli, K.

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

Liang, D. K.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Liu, T. Y.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Rao, Y. J.

Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
[CrossRef]

C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
[CrossRef]

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Y. J. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

Y. J. Rao and D. A. Jackson, "Universal fiber-optic point sensor system for quasi-static absolute measurements of multi-parameters exploiting low coherence interrogation," J. Lightwave Technol. 14, 592-600 (1996).
[CrossRef]

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

Shannon, C.

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

Taylor, H. F.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

H. F. Taylor, "Fiber optic sensors based upon the Fabry-Perot interferometer," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Udd, E.

E. Udd, "Overview of fiber optic sensors," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002), Chap. 1.
[CrossRef]

Wang, Y. P.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Webb, D. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Yuan, S. F.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Zeng, X. K.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Zhang, L.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Zhou, C. X.

Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
[CrossRef]

C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
[CrossRef]

Zhu, Y.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Electron. Lett. (2)

Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection," Electron. Lett. 31, 1009-1010 (1995).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "High-resolution, wavelength-division-multiplexed in-fiber Bragg grating sensor system," Electron. Lett. 32, 924-926 (1996).
[CrossRef]

J. Lightwave Technol. (3)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, "In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors," J. Lightwave Technol. 10, 1376-1397 (1992).
[CrossRef]

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, "Development of prototype fiber-based Fizeau pressure sensors with temperature compensation," J. Lightwave Technol. 12, 1685-1695 (1994).
[CrossRef]

Y. J. Rao and D. A. Jackson, "Universal fiber-optic point sensor system for quasi-static absolute measurements of multi-parameters exploiting low coherence interrogation," J. Lightwave Technol. 14, 592-600 (1996).
[CrossRef]

Meas. Sci. Technol. (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Y. J. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Opt. Lasers Eng. (1)

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. Lasers Eng. 38, 557-566 (2002).
[CrossRef]

Proc. SPIE (1)

C. X. Zhou, Y. J. Rao, and J. Jiang, "A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system," Proc. SPIE 5634, 219-224 (2004).
[CrossRef]

Sens. Actuators A (1)

Y. J. Rao, J. Jiang, and C. X. Zhou, "Spatial-frequency-multiplexed fiber-optic Fizeau strain sensor system with optical amplification," Sens. Actuators A 120, 354-359 (2005).
[CrossRef]

Other (2)

E. Udd, "Overview of fiber optic sensors," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002), Chap. 1.
[CrossRef]

H. F. Taylor, "Fiber optic sensors based upon the Fabry-Perot interferometer," in Fiber Optic Sensors, F. T. S. Yu and S. Yin, eds. (Marcel Dekker, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of a CFBGFP sensor.

Fig. 2
Fig. 2

Schematic diagram of the multiplexing system.

Fig. 3
Fig. 3

(Color online) Interferometric signal of the CFBGFP sensor with a cavity length of 3 mm .

Fig. 4
Fig. 4

(Color online) FFT spectrum for two different cavity lengths.

Fig. 5
Fig. 5

(Color online) Schematic of the experimental setup.

Fig. 6
Fig. 6

(Color online) Mixed signal of four CFBGFP sensors.

Fig. 7
Fig. 7

(Color online) Experimental results of four CFBGFP strain sensors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r F P = r 1 + r 2 exp ( - i Φ F P ) 1 + r 1 r 2 exp ( - i Φ F P ) .
r F P = r g + r g exp ( - i Φ F P ) 1 + r g 2 exp ( - i Φ F P ) .
r F P ( λ ) r g ( λ ) [ 1 + exp ( - i Φ F P ) ] .
R F P = 2 R g ( λ ) ( 1 + cos Φ F P ) ,
L F P = m λ 1 λ 2 2 n | λ 1 - λ 2 | ,
L F P = k 2 nNδν , k = 0 , 1 , 2 , , N - 1.

Metrics