Abstract

What is believed to be a new technique that allows for the simultaneous measurement of 2D temperature and chemical species concentration profiles with high spatial resolution and fast time response was developed and tested successfully by measuring a thin layer of fuel vapor created over a volatile fuel surface. Normal propanol was placed in an open-top rectangular container, and n-propanol fuel vapor was formed over the propanol surface in a quiescent laboratory environment. An IR beam with a wavelength of 8–13 μm emitted from a heated plate and a He–Ne laser beam with a wavelength of 632 nm were combined and passed through the n-propanol vapor layer, and both beams were absorbed by the vapor layer. The absorption of the IR beam was recorded by an IR camera, and the He–Ne laser was used to form a holographic interferogram. Two-dimensional temperature and propanol vapor concentration profiles were, respectively, determined by the IR absorption and the fringe pattern associated with the holographic interferogram. This new measurement technique is a significant improvement over the dual wavelength holographic interferometry that has been used previously to measure temperature and fuel concentration, and it is ready for application under different types of fire and flame conditions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
    [CrossRef]
  2. J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
    [CrossRef]
  3. G. M. Makhviladze and S. E. Yakush, "Large-scale unconfined fires and explosions," in Proceedings of the Twenty-Ninth Symposium (International) on Combustion (The Combustion Institute, 2002), Vol. 29, pp. 313-320.
  4. C. K. Law and G. M. Faeth, "Opportunities and challenges of combustion in microgravity," Prog. Energy Combust. Sci. 20, 65-113 (1994).
    [CrossRef]
  5. M. M. EI-Wakil and C. L. Jaeck, "A two-wave length interferometer for the study of heat and mass transfer," Trans. ASME , Ser. C: J. Heat Transfer 86, 464-470 (1964).
  6. J. P. Hartnett, T. F. Irvine, Jr., eds., Advances in Heat Transfer (Academic Press, 1970), Vol. 6, pp. 344-345.
  7. T. Kashiwagi, "Concentration measurements and mass transfer visualization by laser interferometry technique," Nagareno Kasika 7, 25-33 (1987) (in Japanese).
  8. C. M. Vest, Holographic Interferometry (Wiley, 1979), pp. 363-373.
  9. A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
    [CrossRef]
  10. A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
    [CrossRef]
  11. C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.
  12. C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
    [CrossRef]
  13. A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
    [CrossRef]
  14. T. Konishi, A. Ito, and K. Saito, "Transient infrared temperature measurement of liquid-fuel surfaces: results of studies of flames spread over liquids," Appl. Opt. 39, 4278-4283 (2000).
    [CrossRef]
  15. T. Konishi, S. Naka, A. Ito, and K. Saito, "Transient two-dimensional fuel concentration measurement technique," Appl. Opt. 36, 8815-8819 (1997).
    [CrossRef]
  16. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, 2001), pp. 686-691.
  17. K. W. Beach, R. H. Muller, and C. W. Tobias, "Light-deflection effects in the interferometry of one-dimensional refractive-index field," J. Opt. Soc. Am. 63, 559-566 (1973).
    [CrossRef]
  18. P. P. Sethna and D. Williams, "Optical constants of alcohols in the infrared," J. Phys. Chem. 83, 405-409 (1973).
    [CrossRef]
  19. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993) pp. 342-345.
  20. T. Konishi, "Flame spread over liquid fuels," Ph.D. dissertation (Oita University, 1998).

2003

A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
[CrossRef]

2002

J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
[CrossRef]

2000

1999

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

1998

T. Konishi, "Flame spread over liquid fuels," Ph.D. dissertation (Oita University, 1998).

1997

1994

C. K. Law and G. M. Faeth, "Opportunities and challenges of combustion in microgravity," Prog. Energy Combust. Sci. 20, 65-113 (1994).
[CrossRef]

C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
[CrossRef]

1993

A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
[CrossRef]

1992

A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
[CrossRef]

1987

T. Kashiwagi, "Concentration measurements and mass transfer visualization by laser interferometry technique," Nagareno Kasika 7, 25-33 (1987) (in Japanese).

1973

1964

M. M. EI-Wakil and C. L. Jaeck, "A two-wave length interferometer for the study of heat and mass transfer," Trans. ASME , Ser. C: J. Heat Transfer 86, 464-470 (1964).

Arakawa, A.

A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
[CrossRef]

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

Beach, K. W.

Becker, R.

J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
[CrossRef]

Chung, Y. C.

A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
[CrossRef]

Cremers, C. J.

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

di Marzo, M.

J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
[CrossRef]

EI-Wakil, M. M.

M. M. EI-Wakil and C. L. Jaeck, "A two-wave length interferometer for the study of heat and mass transfer," Trans. ASME , Ser. C: J. Heat Transfer 86, 464-470 (1964).

Faeth, G. M.

C. K. Law and G. M. Faeth, "Opportunities and challenges of combustion in microgravity," Prog. Energy Combust. Sci. 20, 65-113 (1994).
[CrossRef]

Gruver, W. A.

A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
[CrossRef]

Hartnett, J. P.

J. P. Hartnett, T. F. Irvine, Jr., eds., Advances in Heat Transfer (Academic Press, 1970), Vol. 6, pp. 344-345.

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, 2001), pp. 686-691.

Inamura, T.

A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
[CrossRef]

Irvine, T. F.

J. P. Hartnett, T. F. Irvine, Jr., eds., Advances in Heat Transfer (Academic Press, 1970), Vol. 6, pp. 344-345.

Ishida, H.

C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
[CrossRef]

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

Ito, A.

T. Konishi, A. Ito, and K. Saito, "Transient infrared temperature measurement of liquid-fuel surfaces: results of studies of flames spread over liquids," Appl. Opt. 39, 4278-4283 (2000).
[CrossRef]

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

T. Konishi, S. Naka, A. Ito, and K. Saito, "Transient two-dimensional fuel concentration measurement technique," Appl. Opt. 36, 8815-8819 (1997).
[CrossRef]

A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
[CrossRef]

Jaeck, C. L.

M. M. EI-Wakil and C. L. Jaeck, "A two-wave length interferometer for the study of heat and mass transfer," Trans. ASME , Ser. C: J. Heat Transfer 86, 464-470 (1964).

Kashiwagi, T.

T. Kashiwagi, "Concentration measurements and mass transfer visualization by laser interferometry technique," Nagareno Kasika 7, 25-33 (1987) (in Japanese).

Konishi, T.

T. Konishi, A. Ito, and K. Saito, "Transient infrared temperature measurement of liquid-fuel surfaces: results of studies of flames spread over liquids," Appl. Opt. 39, 4278-4283 (2000).
[CrossRef]

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

T. Konishi, "Flame spread over liquid fuels," Ph.D. dissertation (Oita University, 1998).

T. Konishi, S. Naka, A. Ito, and K. Saito, "Transient two-dimensional fuel concentration measurement technique," Appl. Opt. 36, 8815-8819 (1997).
[CrossRef]

Law, C. K.

C. K. Law and G. M. Faeth, "Opportunities and challenges of combustion in microgravity," Prog. Energy Combust. Sci. 20, 65-113 (1994).
[CrossRef]

Makhviladze, G. M.

G. M. Makhviladze and S. E. Yakush, "Large-scale unconfined fires and explosions," in Proceedings of the Twenty-Ninth Symposium (International) on Combustion (The Combustion Institute, 2002), Vol. 29, pp. 313-320.

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993) pp. 342-345.

Muller, R. H.

Naka, S.

Narumi, A.

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

Qian, C.

C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
[CrossRef]

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

Quintiere, J. G.

J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
[CrossRef]

Saito, K.

T. Konishi, A. Ito, and K. Saito, "Transient infrared temperature measurement of liquid-fuel surfaces: results of studies of flames spread over liquids," Appl. Opt. 39, 4278-4283 (2000).
[CrossRef]

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

T. Konishi, S. Naka, A. Ito, and K. Saito, "Transient two-dimensional fuel concentration measurement technique," Appl. Opt. 36, 8815-8819 (1997).
[CrossRef]

C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
[CrossRef]

A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
[CrossRef]

A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
[CrossRef]

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

Sethna, P. P.

P. P. Sethna and D. Williams, "Optical constants of alcohols in the infrared," J. Phys. Chem. 83, 405-409 (1973).
[CrossRef]

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, 2001), pp. 686-691.

Tashtoush, G.

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

Tobias, C. W.

Torero, J. L.

A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
[CrossRef]

Usmani, A. S.

A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979), pp. 363-373.

Williams, D.

P. P. Sethna and D. Williams, "Optical constants of alcohols in the infrared," J. Phys. Chem. 83, 405-409 (1973).
[CrossRef]

Yakush, S. E.

G. M. Makhviladze and S. E. Yakush, "Large-scale unconfined fires and explosions," in Proceedings of the Twenty-Ninth Symposium (International) on Combustion (The Combustion Institute, 2002), Vol. 29, pp. 313-320.

Appl. Opt.

Combust. Flame

C. Qian, H. Ishida, and K. Saito, "Upward flame spread along PMMA vertical corner walls, Part II," Combust. Flame 99, 331-338 (1994).
[CrossRef]

A. Arakawa, K. Saito, and W. A. Gruver, "An automated infrared imaging temperature measurement: with application to upward flames spread studies," Combust. Flame 92, 222-230 (1993).
[CrossRef]

Fire Safety J.

A. S. Usmani, Y. C. Chung, and J. L. Torero, "How did the WTC towers collapse: a new theory," Fire Safety J. 38, 501-533 (2003).
[CrossRef]

J. G. Quintiere, M. di Marzo, and R. Becker, "A suggested cause of the fire-induced collapse of the World Trade Towers," Fire Safety J. 37, 707-716 (2002).
[CrossRef]

J. Heat Transfer

A. Ito, A. Narumi, T. Konishi, G. Tashtoush, K. Saito, and C. J. Cremers, "The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids," J. Heat Transfer 121, 413-419 (1999).
[CrossRef]

A. Ito, K. Saito, and T. Inamura, "Temperature structure of liquid phase in pool fires supported on water: implication to boilover phenomenon," J. Heat Transfer 114, 944-949 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

P. P. Sethna and D. Williams, "Optical constants of alcohols in the infrared," J. Phys. Chem. 83, 405-409 (1973).
[CrossRef]

Nagareno Kasika

T. Kashiwagi, "Concentration measurements and mass transfer visualization by laser interferometry technique," Nagareno Kasika 7, 25-33 (1987) (in Japanese).

Prog. Energy Combust. Sci.

C. K. Law and G. M. Faeth, "Opportunities and challenges of combustion in microgravity," Prog. Energy Combust. Sci. 20, 65-113 (1994).
[CrossRef]

Trans. ASME

M. M. EI-Wakil and C. L. Jaeck, "A two-wave length interferometer for the study of heat and mass transfer," Trans. ASME , Ser. C: J. Heat Transfer 86, 464-470 (1964).

Other

J. P. Hartnett, T. F. Irvine, Jr., eds., Advances in Heat Transfer (Academic Press, 1970), Vol. 6, pp. 344-345.

G. M. Makhviladze and S. E. Yakush, "Large-scale unconfined fires and explosions," in Proceedings of the Twenty-Ninth Symposium (International) on Combustion (The Combustion Institute, 2002), Vol. 29, pp. 313-320.

C. M. Vest, Holographic Interferometry (Wiley, 1979), pp. 363-373.

C. Qian, A. Arakawa, H. Ishida, K. Saito, and C. J. Cremers, "Temperature measurement by infrared images with application to fire research," in Proceedings of the Twenty-second International Conference on Thermal Conductivity, T.W.Tong, ed. (Technomic, 1994), pp. 973-984.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993) pp. 342-345.

T. Konishi, "Flame spread over liquid fuels," Ph.D. dissertation (Oita University, 1998).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, 2001), pp. 686-691.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Interferograms by DWHI.

Fig. 2
Fig. 2

Effect of the fringe numbers exerted on the temperature and concentration changes in DWHI.

Fig. 3
Fig. 3

Relationship between the readout error of fringe numbers and the relative error of temperature and concentration change.

Fig. 4
Fig. 4

(Color online) Schematic illustration of the attenuation of the IR ray and the refraction of the He–Ne laser ray due to vapor absorption and temperature variation.

Fig. 5
Fig. 5

Gladstone–Dale constants as a function of wavelength for air, n-propanol, and methanol at a temperature of 288 K (Ref. 8).

Fig. 6
Fig. 6

Error estimates for holographic interferometry; error estimates as a function of wavelength for n-propanol.

Fig. 7
Fig. 7

Error estimates for IR absorption method for n-propanol.

Fig. 8
Fig. 8

(Color online) Schematic of the experimental apparatus used to measure the 2D distribution of temperature and concentration simultaneously.

Fig. 9
Fig. 9

Typical IR and interferogram images.

Fig. 10
Fig. 10

Two-dimensional quasi-steady-state concentration profiles by the IR–HI method.

Fig. 11
Fig. 11

Two-dimensional quasi-steady-state temperature profiles obtained by the IR–HI method.

Fig. 12
Fig. 12

Comparison between the experimental results of the IR–HI method and the 1D diffusion theory and thermocouple method.

Equations (149)

Equations on this page are rendered with MathJax. Learn more.

300   nm
10   fringes / mm
T f ( z )
ρ f ( z )
Δ n ( z ) = n n 0 = ( κ f M a M f κ a ) ρ f ( z ) ,
n 0
T 0
T f ( z )
Δ n ( z ) = n n 0 = ( κ f M a M f κ a ) ρ f ( z ) + M a κ a P R ( 1 T f ( z ) 1 T 0 ) ,
Δ n ( z ) L = N i ( z ) λ .
1 T f ( z ) = 1 T 0 + N i ( z ) λ R L M a κ a P R ρ f ( z ) M a κ a P ( κ f M a M f κ a ) .
T f ( z )
ρ f ( z )
λ 1
λ 2
N 1
N 2
1 T f ( z ) = 1 T 0 + N 1 ( z ) λ R L M a λ 1 κ a λ 1 P R ρ f ( z ) M a κ λ 1 P ( κ f λ 1 M a M f κ a λ 1 ) .
1 T f ( z ) = 1 T 0 + N 2 ( z ) λ R L M a λ 2 κ a λ 2 P R ρ f ( z ) M a κ a λ 2 P ( κ f λ 2 M a M f κ a λ 2 ) .
N 1
N 2
T f ( z )
ρ f ( z )
44 ° C
N real
ρ real
N read
ρ read
( N real N read ) / N read
( ρ real ρ read ) / ρ read
N 1
N 2
10 %
20   μm
300%
40%
8 12   μm
ρ f ( z )
T f ( z )
I a , λ ¯
I a , λ ¯ = σ ε w , λ ¯ T w 4 π e ρ a α a , λ ¯ L = σ ε IR , λ ¯ T w 4 π ,
α a , λ ¯
12   μm
ρ a
ε IR , λ ¯
8   to   12   μm
T w
I a , λ ¯
T w
I fa
I fa , λ ¯
I fa , λ ¯ = σ ε w , λ ¯ T w 4 π e ρ fa α fa, λ ¯ L + 0 ρ fa α fa, λ ¯ L σ ε fa , λ ¯ T f 4 π ×  ρ fa α fa , λ ¯ e ρ fa α fa ( L x ) d x = σ ε IR , λ ¯ T w 4 π ,
α fa , λ ¯
ρ fa
ε fa , λ ¯
T fa
I fa , λ ¯
T w
ε w , λ ¯ ε fa , λ ¯
I a , λ ¯ I fa , λ ¯ = ( σ ε w , λ ¯ T w 4 / π ) e ρ a α a , λ ¯ L ( σ ε w , λ ¯ T w 4 / π ) e ρ fa α fa , λ ¯ L = σ ε IR , λ ¯ T w 4 / π σ ε IR , λ ¯ T w 4 / π .
e L ( ρ fa α fa , λ ¯ ρ a α a , λ ¯ ) = ( T w T w ) 4 ,
ρ fa α fa , λ ¯ ρ a α a , λ ¯ = ρ f α f , λ ¯ = 4 L ln e ( T w T w ) .
ρ f = 4 α f , λ ¯ L ln e ( T w T w ) .
T w
T w
α f , λ ¯
ρ f 0
α f , λ ¯ = 4 L ρ f 0 ln e [ T w ( 0 ) T w ( 0 ) ] .
T f ( z )
1 T f ( z ) = 1 T 0 + N i ( z ) λ R L M a κ a P R M a κ a P ( κ f M a M f κ a ) ×  4 α f , λ ¯ L ln e ( T w T w ) .
δ C + δ T
Δ ρ C + Δ ρ T
Δ ρ y
40 ° C
5 20   vol .   % / cm
25 80 K / cm
160   mm
2 .8%
160   mm
5   vol .   % / cm
25 K / cm
3.4 %
T f ( z )
I fa , λ ¯ = σ ε w , λ ¯ T w 4 π e ρ fa α fa , λ ¯ L + σ ε fa , λ ¯ T f 4 π e ρ fa α fa , λ ¯ L × ( e ρ fa 2 α fa , λ ¯ 2 L 1 ) = σ ε w , λ ¯ T w 4 π .
ε w , λ ¯ ε fa , λ ¯
ε w , λ ¯ ε fa , λ ¯
α fa , λ ¯ ( T ,   ρ )
relative   error   ( % ) = ln e ( I fa , λ ¯ / I a , λ ¯ ) ln e ( I fa , λ ¯ / I a , λ ¯ ) ln e ( I fa , λ ¯ / I a , λ ¯ ) = ln e ( I fa , λ ¯ / I fa , λ ¯ ) ln e ( I fa , λ ¯ / I a , λ ¯ ) ,
I fa , λ ¯
( 3 . 0   μm )
( 3.38 , 3.47 , 6.85 , 7.19   μm )
( 9.43 , 9.80 , 10.3 , 16.4   μm )
ε fa , λ ¯ = 1 e τ ,
β = π b d ,
τ = 2 β x ,
X = p S ,
x = S X 2 π b ,
8   to   12   μm
d = 167 cm 1 ,
b = 50 cm 1 ,
S = 7.5   atm   cm 2
τ = 0.049 ,
β = 0.940 ,
X = 1.09 ,
x = 0.026
p = 0.068   atm
40   ° C
ε fa , λ ¯ = 0.049
12   μm
15%
T w = 200 ° C
25%
T w = 150 ° C
40   ° C
120   ° C
30%
α fa , λ ¯ ( T , ρ )
T f / T 0
1 %
16.4   μm
15   μm
T f / T 0 = 313 / 298 = 1.05
30   mW
20   mm   wide × 25   mm   deep × 160   mm
1 / 250 s
50   mm
120   ° C
30%
8 12   μm
0 .1   ° C
30   ms
40   ° C
50   μm
35   ° C
33   ° C
2 .5   mm
30   ° C
28 .3   ° C
4 .6   mm
25   ° C
25   ° C
7 .5   mm
30%
40   ° C
120   ° C
300%
40%
10%
20   μm

Metrics